Calibration Report: Eppley PIR Pyrgeometer

Summary

Calibration Date: April 20, 2010					Calibration Due Date: April 2012		
Serial No. 26036F3	C μV/W/m² 4.185	<i>k1</i> 0.06	<i>k2</i> 1.003	<i>k</i> 3 2.9	U95 2.94137	7865	
27174F3	4.22	0.06	1.001	3.1	3.13859	1697	
PMOD Equ	ation:				·		
E = - Where: $E = Ir$ $U_{emf} =$ $C = Se$ $k1, k2, k$ $\sigma = Ste$ $T_B = Ou$ $T_D = Ou$ $f = Cor$ the $\Delta T_{S-N} =$ T_{SE, T_N}	$\frac{U_{emf}}{C}$ (1 + F c radiance, W/ Thermopile of radiance, W/ Thermopile of radiance, W/ Thermopile of ansitivity Coe (3 = Correction (3 = Correction (4 + F) (5 + F)	(m^2) output ve fficient, on facto nann Co thermis e thermis s used v + (T_{SW} – ut of don west res	bltage, μV $\mu V/W/m^2$ rs instant, 5.6 tor YSI 440 stor YSI 440 g wave con without a sh T_N) ne thermistic spectively, μ	- $k_3 \sigma (T^4 R)$ 7 x 10 ⁻⁸ M 031 , <i>K</i> 031, <i>K</i> 031, <i>K</i> 031, <i>K</i> 0 nading dis 0 nading dis 0 rs, south <i>K</i>	$p - T^4{}_B$) //m ² K ⁴ f direct sun if k. east, north and	<i>EQN 1</i>	
$E = \frac{U_{emf}}{Cs} + \sigma T^4{}_B - K'\sigma (T^4{}_D - T^4{}_B) \qquad EQN 2$ Where: $E = \text{Irradiance, } W/m^2$ $Cs = \text{Sensitivity Coefficient, } \mu V/W/m^2$							
U_{emf} = Thermopile output voltage μV σ = Stephan-Boltzmann Constant, 5.67 x 10 ⁻⁸ <i>W/m</i> ² <i>K</i> ⁴ T_B = Output of body thermister YSI 44031, <i>K</i> <i>K</i> ' = Dome heating constant T_D = Output of dome thermister YSI 44031, <i>K</i>							

NREL Equation and Coefficients:							
Serial No.	k0	k1	k2	k3	Kr	Sigma	U95
26036F3 27174F3	0.0 0.0	0.243 0.241	1.003 1.001	-2.9 -3.1	0.0007044 0.0007044	5.6704E ⁻⁸ 5.6704E ⁻⁸	2.976530965 3.034613252
NREL Equat W _{in} =	tion: K₀ +	K 1 *	V _{TP}	+ K ₂	* W _r + K	3 * W _{d-r}	
Where: - K_0 , K_1 , K_2 and K_3 = calibration coefficients. - V_{TP} = thermopile outpul voltage, in micro-Volt. - $W_r = \sigma * T_r^4$ = receiver radiation, in W/m ² , where: - $\sigma = 5.6704 * 10^{-8}$, in W . m ⁻² . K ⁻⁴ - $T_r = T_c + k_r * V_{TP}$ = Receiver temperature, in Kelvin, and $k_r = 0.0007044$ - T_c = Case temperature, in Kelvin - $W_{d-r} = \sigma * (T_d^4 - T_r^4)$, in W/m ² , and T_d = Dome temperature, in Kelvin.							
UUT Calibration Coefficients: 26036F3: $K_0 = 0;$ $K_1 = 0.243;$ $K_2 = 1.003;$ $K_3 = -2.9$ 27174F3: $K_0 = 0;$ $K_1 = 0.241;$ $K_2 = 1.001;$ $K_3 = -3.1$							
Uncertainty: (see attached figure for calibration data) $U_{95} = +/- 3.0 \text{ W/m}^2$ (w.r.t. WISG*) with Coverage Factor = 2.							
*World Infrared Standard Group							

Calibration Report: Eppley PIR Pyrgeometer

Two Eppley Laboratory, Inc. Precision Infrared Pyrgeometers (PIR) instruments were calibrated. This calibration was performed in order that the instruments comply with specifications set in the Baseline Surface Radiation Network (BSRN) Operator's Manual, V 2.1, 2005. The National Renewable Energy Laboratory's (NREL) Solar Radiation Research Laboratory (SRRL) Metrology Laboratory in Golden, Colorado performed the calibration. The calibration period was 25 March – 16 April 2010. The serial numbers of the units calibrated were 26036F3 and 27174F3.

1. Introduction

Two Eppley Laboratory, Inc. PIR's were calibrated to meet the 2005 Baseline Surface Radiation Network (BSRN) specifications. NREL's SRRL's Metrology Laboratory in Golden, Colorado completed these calibration tasks.

2. Results

Calibration results for each instrument are shown in the above summary page along with the governing equations. The use of EQN. 1 with the above tabular values is described above. The instruments at COVE use the PMOD equation as it has been the standard since COVE's inception. EQN. 2 and the associated tabular values are provided as a historical connection to the Albrecht et al. single sensitivity factor method.

The Calibration Certificates provided by NREL/SRRL describe their method of calibration. NREL provides plots that disply data using both equations (PMOD and NREL) during the calibration period.

3. Discussion

These sensors have been calibrated to permit the measurement of diffuse radiation. Global measurements involve determination of the factor *f*. The manufacturer, Eppley Laboratories, Inc., defines an uncertainty of 5%. Field data need to be examined in order to assess the standard uncertainty made by the calibrated instruments.

The single sensitivity factor calibration histories of the two sensors calibrated at NREL/ SRRL and PMOD are as follows:

26036F3

Apr. 2010	NREL	4.185	μ V/W/m ²
Mar. 2007	PMOD	3.96	μ V/W/m ²
Jan. 2002	PMOD	3.86	$\mu V/W/m^2$
Sep. 2000	PMOD	3.61	μ V/W/m ²
Apr. 1998	PMOD	3.84	μ V/W/m ²

27174F3

Apr. 2010	NREL	4.22	μ V/W/m ²
Mar. 2003	PMOD	3.93	μ V/W/m ²
Sep. 2000	PMOD	3.77	μ V/W/m ²
Apr. 1998	PMOD	4.03	μ V/W/m ²

PIR instrument (S/N:26036F3) single sensitivity factor, *Cs*, has remained within variability of 5% or less through each of the calibrations, which did not involve physical changes to the instrument. This variability is within manufacturer stated design specifications. However, PIR instrument (S/N:27174F3) did not remian within 5% or less. This may be due to the fact that it has been 7 years since the last calibration. Hence, now this PIR is in calibration.

4. Summary

A calibration of two Eppley Laboratory Inc. PIR instruments has been completed. Data analyses have been performed. The calibration factors are presented in the summary table above and in the Calibration Certificates.

No apparent performance anomalies are indicated from the single sensitivity factor calibration history of PIR (S/N:26036F3). However, PIR(S/N:27174F3) was outside the 5% variability since its last calibration. 7 years between calibrations may explain this anomaly.

These calibration factors can be used with these two instruments after 20 April 2010.

REFERENCES

Albrecht, B., and S.K. Cox, Procedures for Improving Pyrgeometer Performance, Journal of Applied Meteorology, 16, 179-188, 1977.

Frohlich, C., and R. Philipona, Characterization of pyrgeometers and the accuracy of atmospheric longwave measurements, Ch., Betz, Applied Optics, 34(9), 1598-1605, 1995.

McArthur, J.B., World Climate Research Program, Baseline Surface Radiation Network Operations Manual, Version 2.1., 2005.

National Renewable Energy Laboratory Solar Radiation Research Laboratory Metrology Laboratory Calibration Certificate

ing PIRs: 31197F3
o 16 April, 2010
ariable conditions

Equation:

$$\begin{split} & \textbf{W}_{in} = \textbf{K}_{0} + \textbf{K}_{1} * \textbf{V}_{TP} + \textbf{K}_{2} * \textbf{W}_{r} + \textbf{K}_{3} * \textbf{W}_{d-r} \\ & \text{Where:} \\ & - \textbf{K}_{0}, \textbf{K}_{1}, \textbf{K}_{2} \text{ and } \textbf{K}_{3} = \text{calibration coefficients.} \\ & - \textbf{V}_{TP} = \text{thermopile output voltage, in micro-Volt.} \\ & - \textbf{W}_{r} = \sigma * T_{r}^{4} = \text{receiver radiation, in W/m}^{2}, \\ & \text{where:} \\ & - \sigma = 5.6704 * 10^{-8}, \text{ in W} \cdot \text{m}^{-2}. \text{K}^{-4} \\ & - T_{r} = T_{c} + \textbf{k}_{r} * \textbf{V}_{TP} = \text{Receiver temperature, in Kelvin, and } \textbf{k}_{r} = 0.0007044 \\ & - T_{c} = \text{Case temperature, in Kelvin} \\ & - \textbf{W}_{d-r} = \sigma * (T_{d}^{4} - T_{r}^{4}), \text{ in W/m}^{2}, \text{ and } T_{d} = \text{Dome temperature, in Kelvin.} \end{split}$$

UUT Calibration Coefficients:

 $K_0 = 0$; $K_1 = 0.243$; $K_2 = 1.003$; $K_3 = -2.9$

Uncertainty: (see attached figure for calibration data)

 $U_{95} = \pm 3.0 \text{ W/m}^2$ (w.r.t. WISG *) with Coverage Factor = 2.

* World Infrared Standard Group

Calibrated by : Title:	Ibrahim Reda Senior Scientist II	QA by: Title:	Daryl Myers Senior Scientist II
Signed:	I. Led	Signed:	lalam
Date:	04/20/2010	Date:	04/20/2010

National Renewable Energy Laboratory Solar Radiation Research Laboratory Metrology Laboratory Calibration Certificate

UUT Model: UUT Serial Number: Traceability: Calibration Period: Environmental Conditions: PIR 27174F3 WISG *, using PIRs: 31197F3 25 March to 16 April, 2010 Outdoors/variable conditions

Equation:

$$\begin{split} & \textbf{W}_{in} = \textbf{K}_{0} + \textbf{K}_{1} * \textbf{V}_{TP} + \textbf{K}_{2} * \textbf{W}_{r} + \textbf{K}_{3} * \textbf{W}_{d-r} \\ & \text{Where:} \\ & - \textbf{K}_{0}, \textbf{K}_{1}, \textbf{K}_{2} \text{ and } \textbf{K}_{3} = \text{calibration coefficients.} \\ & - \textbf{V}_{TP} = \text{thermopile output voltage, in micro-Volt.} \\ & - \textbf{W}_{r} = \sigma * \textbf{T}_{r}^{4} = \text{receiver radiation, in W/m}^{2}, \\ & \text{where:} \\ & - \sigma = 5.6704 * 10^{-8}, \text{ in W} \cdot \text{m}^{-2}. \text{K}^{-4} \\ & - \textbf{T}_{r} = \textbf{T}_{c} + \textbf{k}_{r} * \textbf{V}_{TP} = \text{Receiver temperature, in Kelvin, and } \textbf{k}_{r} = 0.0007044 \\ & - \textbf{T}_{c} = \text{Case temperature, in Kelvin} \\ & - \textbf{W}_{d-r} = \sigma * (\textbf{T}_{d}^{4} - \textbf{T}_{r}^{4}), \text{ in W/m}^{2}, \text{ and } \textbf{T}_{d} = \text{Dome temperature, in Kelvin.} \end{split}$$

UUT Calibration Coefficients:

 $K_0 = 0$; $K_1 = 0.241$; $K_2 = 1.001$; $K_3 = -3.1$

Uncertainty: (see attached figure for calibration data)

 $U_{95} = \pm 3.0 \text{ W/m}^2$ (w.r.t. WISG *) with Coverage Factor = 2.

* World Infrared Standard Group

Calibrated by : Title:	Ibrahim Reda Senior Scientist II	QA by: Title:	Daryl Myers Senior Scientist II
Signed:	I.R.L	Signed:	landam
Date:	04/20/2010	Date:	04/20/2010

NREL equation	31197F3	26036F3	2717452	
КО	4.03	0		
K1	0.241	0.742		
K2	0.991	1 002	0.241	
K3	-7 61	1.003	1.001	
Kr	Ω ΩΩΩ7ΩΔΔ	-2.9	-3.1	
Sigma	C.0007044	U.0007044	0.0007044	
	5.6704E-08	5.6704E-08	5.6704E-08	
U95 1.8		2.976530965	3.034613252	
PMOD equation			0.00 1010202	
С	4.25	4 185	4.22	
K1	0.06	0.06	4,ZZ	
K2	1 0025		0.06	
K3	2.6	1.003	1.001	
	2.0	2.9	3.1	
095	1.8	2.94137865	3.138591697	

Reda, 4/20/2010

1OD Equation: = (V/C)*(1+K1*Sigma*T_c³)+K2*W_c-K3*(W_d-W_c)

