Calibration Report: Multifilter Rotating Shadowband Radiometer, MFR-7, s/n 378

31 January 2000
Kevin Larman \& Fred Denn
Analytical Services \& Materials, Inc.
Hampton, Virginia

SUMMARY

Calibration date: 31 January 2000. Next calibration due: 31 January 2002
An analysis of clear sky data from a multifilter shadowband radiometer has been completed. A Harrison Objective Algorithm-Langley Analysis was applied to the data sets. The regressed values are total optical thickness, $\boldsymbol{\tau}$, top-of-atmosphere voltage (corrected for Earth-sun distance), AUVo, and the regression deviation for each of the 5 sensor channels. Each of these factors is a mean of the sum of the four days yielding Harrison Objective Algorithm-Langley Regression outputs. These data were collected at Mauna Loa Observatory, Hawai'i between 10 and 31 January 2000.

Serial Number: MFR-7 378

Channel, nm	Vo	AUVo	τ	dev	n	U95
416	9461.13	9165.00	0.21174	0.02303	4	0.033
497	6348.99	6150.24	0.11995	0.00678	4	0.010
613	5943.02	5756.99	0.08209	0.00510	4	0.007
672	10840.10	10500.80	0.05149	0.00580	4	0.008
868	8758.96	8482.66	0.02176	0.00654	4	0.009

Application:

$$
\tau_{T}=-\left[\frac{\ln (V)-\ln (A U V o)}{m}\right] \quad+/-\mathrm{U} 95
$$

Where: $\quad V=$ Sensor output, voltage counts.
$\tau_{T}=$ Total optical thickness, calibrated.
$\mathrm{m}=$ air mass.
Vo $=$ Intercept from regression
$\tau=$ Slope from regression.
$A U V o=\operatorname{Vo}(\text { Earth-sun distance, } \mathrm{DU})^{2}$, solar constant estimate.
$\mathrm{dev}=$ The standard deviation of the residual variance from the data to the regression line of the \ln (voltage output).
$\mathrm{n}=$ The number of morning or afternoon Langley Regressions. $\mathrm{U} 95=\operatorname{sqrt}\left(2 \operatorname{dev}^{2}\right)$

