Calibration Report: Eppley PIR Pyrgeometer

			S	umm	ary		
Calibration	Date: Ap	oril 2012			Calib	ration Due D	ate: April 2014
NREL/SR	RL Equa	ation and	Coefficie	ents:			
Serial No.	k0	k1	k2	k3	Kr	Sigma	± <i>U</i> 95(W/m²)
26168F3 26169F3	-3.679 -3.033	0.2297 0.2287	1.0226 1.0127	-3.01 -3.12	0.0007044 0.0007044	5.6704E ⁻⁸ 5.6704E ⁻⁸	2.3 2.2
NREL/SR Win	RL Equa	ation: + K ₁ [;]	* V TP	+ K2	* W _r + K	K₃* ₩ _{d-r}	
Wh - Ko, - Vדף - Wr - Wr	here: K_1, K_2 and = thermodel $= \sigma * T_r^4$ where $-\sigma =$ $-T_r = T$ $-T_c = C$ $r = \sigma * (T_r^4)$	ad K ₃ = ca ppile output = receive = 5.6704 * $T_c + k_r * V_T$ Case temp $T_d^4 - T_r^4$), i	libration c ul voltage r irradian 10^{-8} , in W P = Receiv berature, i in W/m ² , a	coefficie , in mic ce, in W / . m ⁻² . ver tem n Kelvir and T _d =	nts. ro-Volt. //m², K ⁻⁴ perature, in Ke Dome tempe	elvin, and k _r : rature, in Ke	= 0.0007044 Ivin.
UUT Calil 26168F 27169F	oration (3: K ₀ = 3: K ₀ =	Coefficie = -3.679; = -3.033;	ents: K ₁ = 0 K ₁ = 0).2297;).2287;	K₂= 1.022 K₂= 1.012	26; K₃ = 27; K₃ =	-3.01 -3.12
Uncertain 26168F 26169F *World Inf	nty: (see 3: U₀₅ = 3: U₀₅ =	e attached ± 2.3 W/I ± 2.2 W/I andard G	d figure fo m² (w.r.t. \ m² (w.r.t. \ Group	or calib WISG*) WISG*)	ration data) with Coverage with Coverage	e Factor = 1 e Factor = 1.	.96. 96.
			·				

Calibration Report: Eppley PIR Pyrgeometer

Abstract

Two Eppley Laboratory, Inc. Precision Infrared Pyrgeometers (PIR) instruments were calibrated. This calibration was performed in order that the instruments comply with specifications set in the Baseline Surface Radiation Network (BSRN) Operator's Manual, V 2.1, 2005. The National Renewable Energy Laboratory's (NREL) Solar Radiation Research Laboratory (SRRL) Metrology Laboratory in Golden, Colorado performed the calibration. The calibration period was 4 April – 23 April 2012. The serial numbers of the units calibrated were 26168F3 and 26169F3.

1. Introduction

Two Eppley Laboratory, Inc. PIR's were calibrated to meet the 2005 Baseline Surface Radiation Network (BSRN) specifications. NREL's SRRL's Metrology Laboratory in Golden, Colorado completed these calibration tasks.

2. Results

Calibration results for each instrument are shown in the above summary page along with the governing equation. The use of the NREL/SRRL equation with the tabular values is described above. The instruments at COVE will now use the NREL/SRRL equation as it will replace the PMOD equation that was used in previous years. The reason for the change is the NREL/SRRL equation results in better precistion (i.e. smaller standard deviation). Also, this equation will be adopted by the ARM program and it is used for all of NREL/SRRL's calibrations.

The Calibration Certificates provided by NREL/SRRL describe their method of calibration.

3. Discussion

These sensors have been calibrated to permit the measurement of diffuse radiation. Global measurements involve determination of the factor f. The manufacturer, Eppley Laboratories, Inc., defines an uncertainty of 5%. Field data need to be examined in order to assess the standard uncertainty made by the calibrated instruments.

Since we used a different equation, the single sensitivity factor calibration histories will be replaced with the four calibration coefficients shown on the first page.

26168F3

Apr. 2012	NREL	$K_0 = -3$	$3.679, K_1 = 0.2297, K_2 = 1.0226, K_3 = -3.01$
Jul. 2009	PMOD	4.72	V/W/m ²
Mar. 2003	PMOD	4.39	V/W/m ²
Jan. 2002	PMOD	4.38	V/W/m ²
Sep. 2000	PMOD	4.26	V/W/m ²

26169F3

Apr. 2012 NREL $K_0 = -3.033$, $K_1 = 0.2287$, $K_2 = 1.0127$, $K_3 = -3.12$ Mar. 2007 PMOD 4.15 $V/W/m^2$ Dec. 1999 PMOD 4.07 $V/W/m^2$

The variability between calibrations cannot be compared at this time since we are switching to a new equation. 5% or less variability through each of the calibrations is the manufactured stated design specification.

4. Summary

A calibration of two Eppley Laboratory Inc. PIR instruments has been completed using the new NREL/SRRL equation. This equation will replace the PMOD equation that was used in previous years due to the NREL/SRRL equation providing better precision. Data analyses have been performed. The calibration factors are presented in the summary table above and in the Calibration Certificates.

Please see the archived calibration writeups on the PIR's for information on the old PMOD equation used before switching to the new NREL/SRRL equation. It is located under Pyrgeometer at http://cove.larc.nasa.gov/calibration.html.

These calibration factors can be used with these two instruments after 24 April 2012.

REFERENCES

Albrecht, B., and S.K. Cox, Procedures for Improving Pyrgeometer Performance, Journal of Applied Meteorology, 16, 179-188, 1977.

Frohlich, C., and R. Philipona, Characterization of pyrgeometers and the accuracy of atmospheric longwave measurements, Ch., Betz, Applied Optics, 34(9), 1598-1605, 1995.

McArthur, J.B., World Climate Research Program, Baseline Surface Radiation Network Operations Manual, Version 2.1., 2005.

National Renewable Energy Laboratory Solar Radiation Research Laboratory Metrology Laboratory Calibration Certificate

Customer:
JUT Model:
JUT Serial Number:
Traceability:
Calibration Period:
Environmental Conditions:

Science Systems & Applications, Inc. (SSAI) PIR 26168F3 WISG *, using PIRs: 31197F3 04 to 23 April, 2012 Outdoors/variable conditions

Equation:

 $W_{in} = K_0 + K_1 * V_{TP} + K_2 * W_r + K_3 * W_{d-r}$ Where: - K₀, K₁, K₂ and K₃ = calibration coefficients. - V_{TP} = thermopile output voltage, in micro-Volt. - W_r = $\sigma * T_r^4$ = receiver irradiance, in W/m², where: - $\sigma = 5.6704* 10^{-8}$, in W · m⁻². K⁻⁴ - T_r = T_c + k_r * V_{TP} = Receiver temperature, in Kelvin, and k_r = 0.0007044 - T_c = Case temperature, in Kelvin

- $W_{d-r} = \sigma^* (T_d^4 - T_r^4)$, in W/m², and T_d = Dome temperature, in Kelvin.

 $K_1 = 0.2297$; $K_2 = 1.0226$; $K_3 = -3.01$

UUT Calibration Coefficients:

K_o = -3.679 ;

Uncertainty: (see attached figure for calibration data) $U_{95} = \pm 2.3 \text{ W/m}^2 (\text{w.r.t. WISG *})$ with Coverage Factor = 1.96

* World Infrared Standard Group

Certified by	y : Ibrahim Reda
Title:	Senior Scientist V
Signed:	Red

Date: 04/24/2012

Page 1 of 1

National Renewable Energy Laboratory Solar Radiation Research Laboratory Metrology Laboratory Calibration Certificate

Customer:	Science Systems & Applications, Inc. (SSAI)
UUT Model:	PIR
UUT Serial Number:	26169F3
Traceability:	WISG *, using PIRs: 31197F3
Calibration Period:	04 to 23 April, 2012
Environmental Conditions:	Outdoors/variable conditions

Equation:

$W_{in} = K_0 + K_1 * V_{TP} + K_2 * V_{Where:}$	W _r + K ₃ * W _{d-r}
- K_0 , K_1 , K_2 and K_3 = calibration coeff - V_{TP} = thermopile output voltage, in - W_r = $\sigma * T_r^4$ = receiver irradiance, in where:	icients. micro-Volt. 1 W/m²,
$\sigma = 5.6704 \times 10^{-8}$, in W . m ⁻²	. K ⁻⁴
- $T_r = T_c + k_r * V_{TP}$ = Receiver 1 - T_c = Case temperature, in Ke - $W_r = \sigma^* (T_r^4 - T_4^4)$ in W/m^2 and T	temperature, in Kelvin, and k _r = 0.0007044 Ivin . = Dome temperature, in Kelvin
UUT Calibration Coefficients: $K_0 = -3.033$; $K_1 = 0.2287$; $K_2 = 1.0$	127 ; K ₃ = -3.12
Uncertainty: (see attached figure for calibratio $U_{95} = \pm 2.2 \text{ W/m}^2$ (w.r.t. WISG *) with Coverage	n data) je Factor = 1.96
* World Infrared Standard Group	
	Certified by : Ibrahim Reda Title: Senior Scientist V Sianed: Red
	Date: 04/24/2012
Page 1 of	1

Results for Pyrgeometer Outdoor Calibration at SRRL From 04/06/2012 to 04/23/2012

	Reference			Test		
	31197F3	30557F3	26169F3	26168F3	30696F3	29926F3
Ко	0.45	-0.946477	-3.033366	-3.679045	-0.69874	-3.255402
י <u>ז</u>	0.242	0.219921	0.22871	0.229722	0.243237	0.279758
K2	1.004	1.005566	1.01265	1.022586	0.996756	1.012604
۲3	-2.61	-2.56	-3.12	-3.01	-3.08	-2,79
אַ	0.0007044	0.0007044	0.0007044	0.0007044	0.0007044	0.0007044
N. Rdg.		2062	2062	2062	2062	2062
+/-U95 W/m ²	1.5	1.9	2.2	2.3	2.2	2.2

Data analysis by: Reda Date: 04/24/2012