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Motivation
Understanding bidirectional effects including sunglint is important for GEO-CAPE for several reasons: (i) correct interpretation of ocean color data;
(ii) comparing consistency of spectral radiance data derived from space observations with a single instrument for a variety of illumination and viewing
conditions; (iii) merging data collected by different instruments operating simultaneously. We present a new neural network (NN) method to correct
bidirectional effects in water-leaving radiance for both Case 1 and Case 2 waters. We also discuss a new BRDF and 2D sun-glint model that was validated
by comparing simulated surface reflectances with Cloud Absorption Radiometer (CAR) data. Finally, we present an extension of our marine bio-optical
model to the UV range that accounts for the seasonal dependence of the inherent optical properties (IOPs).

The Neural Network Method

The bidirectional effect or the Bidirectional Reflectance Dis-
tribution Function (BRDF) has been studied extensively in
the past few decades. The standard correction method de-
veloped by Morel et al. in 2002 (MAG02) is based on the
Case 1 assumption making it unsuitable for application to
coastal (Case 2) waters. We introduce a neural network (NN)
method that can be applied to both Case 1 and Case 2 wa-
ters.
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Figure 1. Simulated remote sensing reflectances.

Figure 1 shows 2 cases of simulated remote sensing re-
flectances. The difference between Case 1 and Case 2
waters is significant, but for each case, the difference
is small between nadir-viewing remote sensing reflectance
Rrs(λi, θ0) and angle-dependent remote sensing reflectance
Rrs(λi, θ0, θ,∆φ). We found that a Radial Basis Function
Neural Network (RBF-NN) can establish a direct connection
between Rrs(λi, θ0) and Rrs(λi, θ0, θ,∆φ). We simulated
30,000 cases with different sun-sensor geometries and dif-
ferent water and atmospheric IOPs to include both Case 1
and Case 2 water conditions. Then we trained a neural net-
work to derive the nadir-viewing Rrs(λi, θ0) from the angle-
dependent Rrs(λi, θ0, θ,∆φ) directly.

Marine Bio-Optical Model - CCRR

In the CCRR (Coast Color Round Robin) model, we assume that algal particles (CHL) and non-algal particles (MIN), in
addition to detrital and dissolved organic matter (CDOM) are present in the water so that it can be used to represent both
algal-dominated (Case 1) water and Case 2 coastal water. The IOPs are parameterized as:

aCHL(λ) = A(λ) × CHLE(λ) bCHL(λ) = 0.407 × CHL0.795 × (λ/660)ν − aCHL(λ)

aMIN(λ) = 0.031 × MIN × exp[−0.0123(λ− 443)] bMIN(λ) = 0.52 × MIN × (λ/555)−0.3749 − aMIN(λ)
aCDOM(λ) = CDOM × exp[−0.0176(λ− 443)]

where A(λ) and E(λ) are from the paper of Brichaud et al. (1998). ν = 0.5 × (log10CHL − 0.3), when CHL < 2.0; and ν = 0
when CHL > 2.0. The model has been extended to UV range (300-400 nm) based on the papers by Morrison and Nelson
(2004), and Vasilkov et al. (2005). In the UV range, the absorption coefficient of algal particles varies with season (absorption
is higher in summer than than in winter). We introduced a UV factor that can be used to describe the seasonal dependence.
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Figure 2. Extended A(λ) and E(λ) coefficient from 300nm to 1000nm.

Anisotropy Correction: Synthetic Data Study and Validation of NN Method

We first analyzed a synthetic dataset to demonstrate the importance of the BRDF correction. We simulated 80,000 remote
sensing reflectances for different sun-sensor geometries and water IOPs using AccuRT, which is a RTM for the coupled
atmosphere-ocean system. The covariation and distribution of the marine parameters: CHL, CDOM and MIN are shown in
Fig. 3. We computed the percentage error between the nadir viewing Rrs(θ0) and the angle-dependent Rrs(θ0, θ,∆φ), which
can be used as an indicator of anisotropy. The error distribution is shown in Fig. 4. We found that for Case 1 water, the error
incurred by the BRDF effect can go up to 25% with an average of 2.8%-5.1% for different wavelengths. For Case 2 water,
the error can go up to 50%, and the average error increases to 9.7%-11%. We also found that the anisotropy in Rrs depends
strongly on sensor viewing angle, whereas the dependence on solar angle and relative azimuthal angle is relatively weak.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

CHL [mg/m
3
]

C
D

O
M

 [
m

−
1
]

(a)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

CHL [mg/m
3
]

M
IN

 [
g

/m
3
]

(b)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

CDOM [m
−1

]

M
IN

 [
g
/m

3
]

(c)

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

0

2

4

6

8

10

R
e
la

ti
v
e
 F

re
q
u
e

n
c
y
 [
%

]

 

 

(d) CHL
CDOM
MIN

−50 −25 0 25 50
0

5

10

15

20

25

[Rrs(θ
0
, θ, ∆φ)−Rrs]/Rrs [%]

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y
 [
%

]

N = 80000

0 20 40 60 80
0

5

10

15

20

25

[R
rs

(θ
0
, 

θ
, 

∆
φ
)−

R
rs

]/
R

rs
 [
%

]

θ
0
 or θ [degrees]

 

 
0 30 60 90 120 150 180

∆ φ [degrees]

θ
0

θ

∆ φ

−50 −25 0 25 50
0

5

10

15

20

25

[Rrs(θ
0
, θ, ∆φ)−Rrs]/Rrs [%]

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y
 [
%

]

 

 

case1(N=10463)

case2(N=69537)

Figure 3. Covariance and distribution Figure 4. Statistics of BRDF anisotropic distribution. Panel 1 shows percentage
of the marine parameters: CHL, CDOM difference between the viewing angle-dependent Rrs(θ0, θ,∆φ) and the nadir
and MIN. viewing Rrs(θ0) for 80,000 simulation data, panel 2 shows the distribution of the

difference for Case 1 and Case 2 waters, and panel 3 shows the dependence on
sun-sensor geometry.

We used the NuRADS field-measured BRDF data available in SeaBASS to validate our neural network BRDF correction
method. Two datasets, BP09 and SORTIE2, were used for validation. BP09 was conducted in the Ligurian Sea in March,
2009 while an algal bloom was ongoing in the area, so the water was dominated by chlorophyll; SORTIE2 was conducted in
January, 2008 near San Diego Bay, where the water is generally Case 2, with high concentrations of both chlorophyll and
sediment particles. Figure 5 shows a comparison of the percentage error distribution of the BRDF derived from our NN
method and the standard MAG02 method.
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Figure 5. Comparison of the percentage error distribution of the BRDF derived from the NN and MAG02 algorithms.

Summary and Further Work
• A new neural network (NN) method to correct

bidirectional effects in remote sensing reflectance
(Rrs) has been developed and validated by in-situ
data (Fan et al. 2015).

• The new NN method shows a similar performance
as the standard MAG02 algorithm in Case 1 water,
but a significant improvement in Case 2 water.

• The bio-optical model was extended to the UV
range and ia UV factor was introduced to account
for seasonal dependence.

• A BRDF and 2D sunglint model (see another
poster) was developed, and validation using
Cloud Absorption Radiometer (CAR) BRDF data
showed very good agreement.

• Future work: Several anisotropy correction ta-
bles will be provided for the ocean color commu-
nity, including sunglint correction for both Case 1
and Case 2 water.
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Validation of the BRDF and 2D Sun Glint Model with CAR Data
We developed a BRDF model and 2D sunglint model. Validation using surface reflectance data measured by the Cloud Absorption Radiometer (CAR) in July 10, 2001 over Chesapeake Bay
shows good agreement (Fig. 6).

Figure 6. Comparison between our BRDF and 2D sun glint model simulated surface reflectances (blue) and CAR measured surface reflectances (red). From left to right, each column shows
a comparison for 340 nm, 380 nm, 472 nm, 682 nm, 870 nm and 1036 nm, respectively. Within each column, the top panel shows a comparison of the entire surface reflectance, the middle
panel shows a comparison of a line of data extracted from the principal plane, and the bottom panel shows the same as the middle panel but from 90◦ across the principal plane.
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