Multi-Slit Optimized Spectrometer ESTO IIP

22 May 2013

PI: Tim Valle – Ball Aerospace & Technologies Corp. Co-I: Curt Davis – Oregon State University

Ball Aerospace & Technologies Corp. Agility to Innovate, Strength to Deliver

- **1. NASA ESTO quad chart**
- 2. Concept review
- 3. Program
- 4. Developments and status
- 5. Data validation Plan

MOS Team Nick Tufillaro, OSU **Bill Good, Ball Michelle Stephens Peter Spuhler Chuck Hardesty Chris Seckar Don Shea Scotty Gilmore** Steve Lane Allan Sword Paul Kaptchen

Multi-Slit Optimized Spectrometer (MOS)

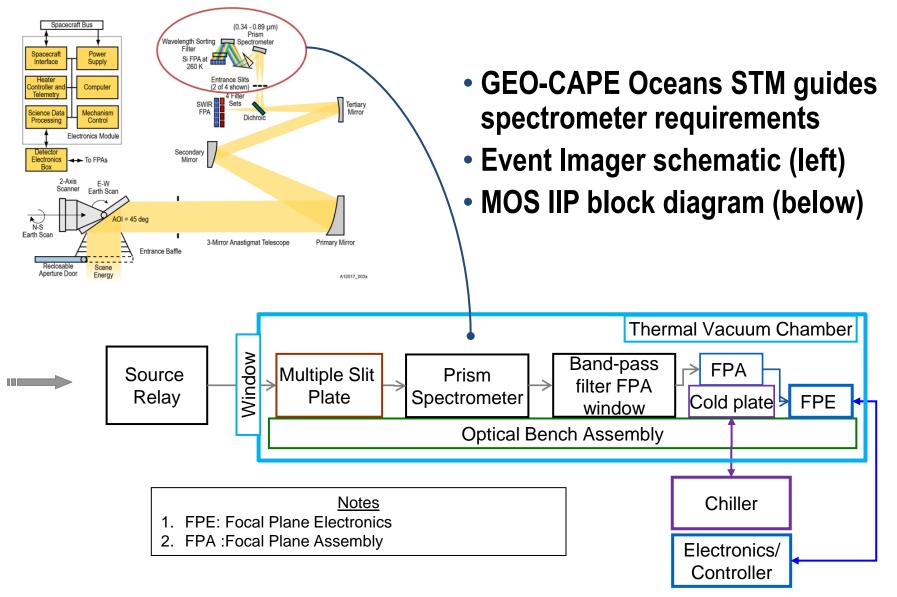
PI: Timothy Valle, Ball Aerospace and Technologies Corp. Co-I: Curtiss Davis, Oregon State University

←S→

Objective

 Objective Design and develop a significantly smaller Coastal Imaging spectrometer that meets GEO- CAPE measurement requirements Develop a MOS for geostationary (GEO) coastal remote sensing and test it in an operational environment Develop a MOS, that can accomplish the ocean color mission with a small package, fast revisit time, and high SNR by producing hyperspectral images at multiple positions simultaneously 	 Dramatically reduces payload size and mission risk If a site state sta	
 Approach Conduct trade study to analyze the design parameters of the MOS for geostationary coastal remote sensing Perform opto-mechanical and thermal design Characterize the performance in a thermal vacuum environment before and after vibration test Show traceability from the measured performance to the GEO-CAPE Event Imager mission 	Key Milestones \checkmark Complete conceptual design12/11 \checkmark Conclude detailed design07/12 \checkmark Complete relay optics04/13 \checkmark Perform FPA/filter testing05/13 \circ Complete spectrometer assembly07/13 \circ Complete system test11/13 \circ Conclude post-vibration system test02/14 \bullet Document mission suitability studies04/14	

←S→



•NASA Common Instrument Interface Project: Hosted Payload Guidelines Rev-A "The instrument chould be loss than or equal to 150 kg

"The instrument should be less than or equal to 150 kg."

Feature	Benefit	
Spectrum from multiple	Geo application with fixed coverage	
slits recorded	time, able to reduce the time to cover	
simultaneously on area	the full field of interest at required SNR	
focal plane array	\rightarrow Aperture reduction (F/#)	
	\rightarrow Mass reduction	

MOS IIP develops spectrometer subsystem to TRL 6

Exit program at TRL 6

NASA Technology Readiness Level 6 Relevant operational environment (TVAC & Vibe) tests complete demonstrating performance matching analytical predictions

Requirements & Trades

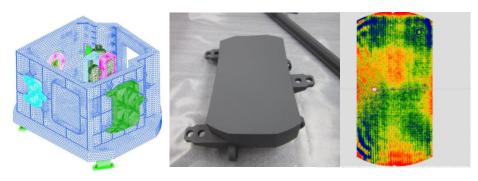
Focal plane

array

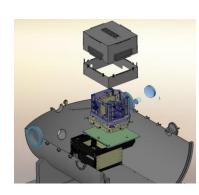
MOS IIP at entry TRL 3

Design, fabricate & plan tests

Assembly Integration & Test T-Vac, vibe, T-Vac


Mission Suitability Validation

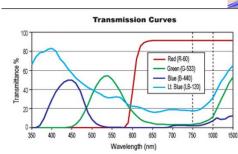
3 year program

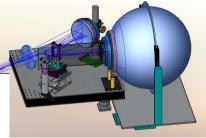


Poised for alignment and testing

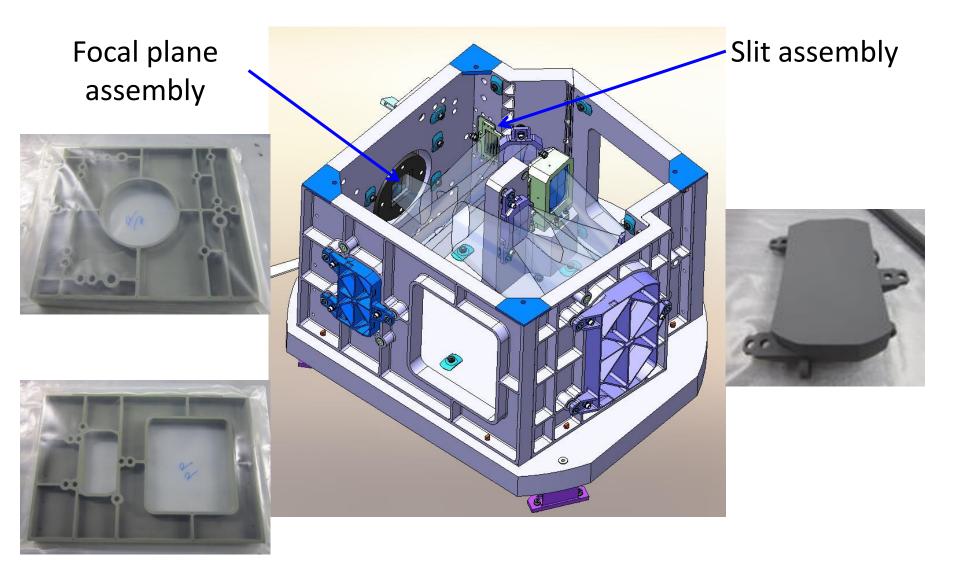
• Mirrors tested, structure near completion

Thermal vacuum chamber equipment ready for use

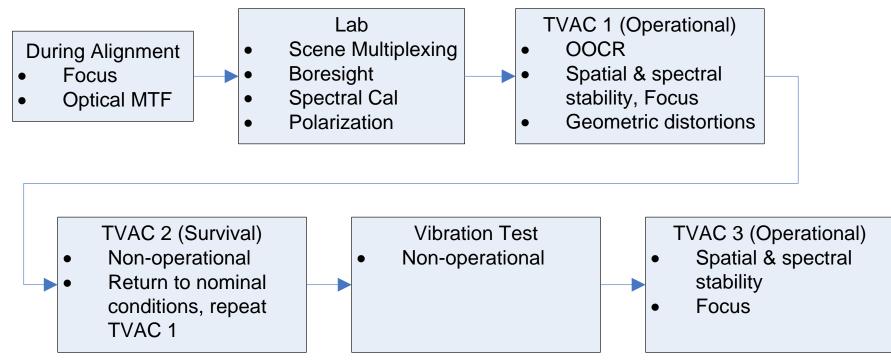




• FPA packaged tested

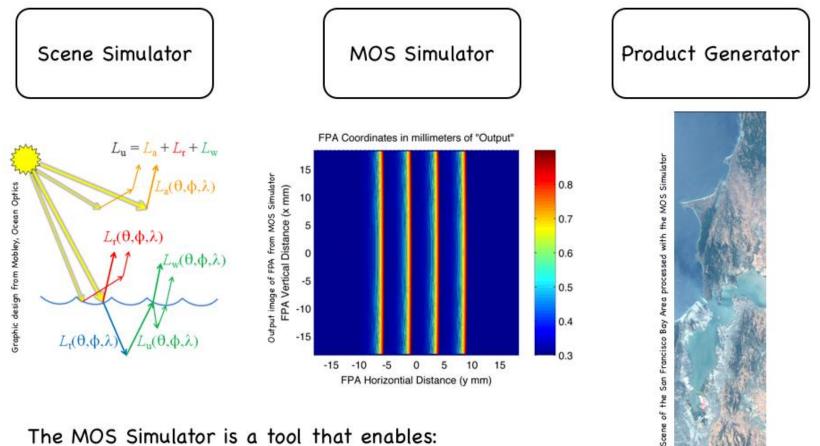


 Test concept developed & hardware assembled



Parameter	Requirement (µm)	Prediction (µm)
Spatial Stability	<5.5	2.0
Spectral Stability	<1.4	0.14
Defocus	<34	6
Keystone	<8	0
Smile	<27	0.4

Keystone & smile below measurement uncertainty



- Out of channel response (OOCR) is the critical test to validate the MOS concept
- Simulated scenes (multiplexed scenes) passed onto OSU to validate science data products
- Other tests address TRL 6

Data product validation

The MOS Simulator is a tool that enables:

- 1. Producing products at 'First Light' for MOS
- 2. Tracking uncertainties at all stages along imaging and product generation
- 3. Making informed design trade-offs using (2)
- 4. Creating and testing new signal correction and product methods

Thanks for your attention.

Questions