Objectives

- Updates on Geo ocean color mission plans
- Share experience and results on geo ocean color studies
- Discuss coordination for "global" constellation of geo ocean color missions
 - Establish minimum requirements
 - Harmonization of global vs coastal coverage
 - Consistency in products produced
- Unique geo products
- Consider plans for joint activities
 - analyses to prepare future geo missions
 - field campaigns

"Global" Geo Ocean Color Constellation

"Global" Geo Ocean Color Constellation

Recommended Geo OC Constellation sensor requirements

						L _{max} ,	SNR at						
Band	λ	$\Delta\lambda$	L _{min}	L _{ref}	L _{max}	ocean	250 m ¹	Use				Band	Band
	(nm)	(nm)	I I	$\mathbf{W} \mathbf{m}^{-2} \mathbf{s}$	${ m sr}^{-1} \ \mu { m m}$	-1	& <i>L</i> _{ref}			Band	Heritage	Center	width
1	395	10	12	65	580	180	400	Chl-CDOM separation		Dunu	mennage	(nm)	(nm)
2	412	20	12	70	550	190	400	CDOM, possibly atmo-					(11111)
								spheric correction above "black waters"					
3	442	20	12	65	650	185	400	Chlorophyll, TSM, CDOM		1	GOCI-II	380	20
4	470	20	11	60	650	175	400	Specific anomalies of the re-					
								flectance spectrum		2	GOCI-B1	412	20
5	490	20	10	50	665	165	400	Chlorophyll, TSM, CDOM,		3	GOCI-R2	443	20
								diffuse attenuation coeffi-		5	GOCIDE	115	20
6	510	20	8	45	620	155	400	Chlorophyll, TSM, CDOM,		4	GOCI-B3	490	20
								detection of blue-absorbing		5	GOCI-II	510 nm^{-1}	20
	- 00					100	200	dust-like aerosols		0			20
7	560	20	6	30	580	132	300	Chlorophyll, TSM, turbidity		6	GOCI-B4	555	20
8	590	20	5	25	550	120	300	Spectral slope b_{hn} , maxi-		7	GOCI-II	625	20
								mum <i>R</i> in Case-2 waters		1	Goern		
9	620	20	4	20	550	95	300	Chlorophyll, TSM		8	GOCI-R5	660	10
10	660	20	3	15	500	86	300	Chlorophyll, TSM, Chl fluo-		0	GOCI D5		
11	681	75	3	15	500	82	200	Chl fluorosconco (poak)		9	COCLER	681	10
12	709	10	3	13	450	75	200	Chlorophyll TSM Secchi		5	GOCI-DO	001	10
15	100	10			150		200	transparency, Chl fluores-		10		745	20
								cence (baseline)		10	GOCI-D/	143	20
13	750	15	3	11	450	65	150	Atmospheric corrections		11			20
14	754	7.5	2	10	400	65	150	Reference for O_2 A-band		11	GOCI-II	705	20
15	761	2.5	2	6	400	63	30	O_2 A-Band (aerosol scale height, clouds)		10			10
16	779	15	2	9	380	60	150	Atmospheric corrections		12	GOCI-88	865	40
17	865	35	1	6	300	45	150	Atmospheric corrections		10			
18	1020	40	1	4 2	220	45	150	Atmospheric corrections	13 to	GOCI-II	709 nm	40 nm	
								(turbid waters), cirrus		15			10 11111
10	1240	20	0.2	0.88	158	5	65	Atmospheric corrections			I	1	1
	1240		0.2	0.00	150			(turbid waters)					
20	1640	40	0.08	0.29	82	2	45	Atmospheric corrections	S			12	
								(turbid waters)	U				

Recommended Geo OC Constellation sensor requirements

Parameter	Goal	Breakthrough	Threshold	Comments
Orbit	Geosynchrono	ous (inclination	Geo-	
	depending on	mission goals)	stationary	
	Complete Earth	Complete Earth	Selected	
Type of Coverage	disk (oceans,	disk (oceans,	areas of	
	coastal zones,	coastal zones)	interest	
	land)			
Revisit	30 min	1 hour	avg. 1 h	
Accessibility to	15	min	none	
specific revisit areas				
Resolution (Nadir	100 m	250 m	500 m	Aggregation might
GSD)				be acceptable for
				some bands
Imager bands	20 (See Table	16	10	
	3.1)			
Temporal co-		For acquisition		
registration for		of a given		
one scene		point in all bands		

Source: IOCCG #12

Harmonization of geo OC products & coverage

- Concur on file and data formats?
 - Follow IOCS splinter recommendations
- Concur on a set of "standard" products and algorithms?
 - Is this best done within individual processing groups? i.e., OBPG, KOSC, EUMETSAT, ...
 - consistent atmospheric correction approaches or capability to implement multiple approaches within various agency processing streams
- What products should we consider to be "standard"
 - chl-a, *K*_d490, PAR, *a*_{CDOM}, *a*_{ph}, *a*_d, *b*_{bp}, POC, etc,
- "quasi" global coverage at set time of morning or afternoon
 - in conjunction with LEO sensor data for multiple retrievals each day.
- Other issues

Backup

Ocean Color & Related Products

Mission Critical Products (drive requirements; heritage algorithms)

•Spectral remote sensing reflectances - Rrs

- •Chlorophyll-a, Primary Productivity
- •Particulate Organic Carbon, Dissolved Organic Carbon, Particulate Inorganic Carbon (coccolithophore blooms)
- •Total Suspended Matter
- •Absorption coefficients of Colored Dissolved Organic Matter, Particles & Phytoplankton; Particle backscatter coefficient
- •Water clarity (kd[490nm]; euphotic depth)
- •Photosynthetically Available Radiation
- •Fluorescence Line Height, Phytoplankton Carbon
- Functional/taxonomic group distributions
- •Harmful Algal Bloom detection & magnitude
- •Aerosols, NO₂ & other products for atmospheric corrections

Highly Desirable Products (experimental products)

- •Particle size distributions & composition, other plant pigments, phytoplankton physiological properties, vertical migration detection
- •Net Community Production, Export Production, Respiration, Photooxidation
- Air Sea CO₂ fluxes, pCO₂(aq)
- •Terrigenous Dissolved Organic Carbon
- Petroleum detection and thickness

Sensitivity - Ltyp

Chuanmin Hu, et al., submitted Appl. Optics April 2012

Z. Ahmad, A. Mannino & C. Hu 8

SNR of Heritage Sensors Scaled to Identical Ltyp values

Chuanmin Hu, L. Feng, Z. Lee, C. Davis, A. Mannino, C. McClain, B. Franz, Applied Optics, submitted

Coastal Applications & Societal Benefits

- Detection and tracking of hazards (HABs, oil spills, etc.)
- Post-storm Assessments (e.g., flood detection)
- Water Quality / Ecosystem Health
- Water clarity forecasting
- Link data to models and decision-support tools and processes (e.g., predict hypoxic regions, fisheries management, ocean acidification) Deepwater Horizon
- Sediment transport (navigation)
- Assessment of climate variability and change

Deepwater Horizon Oil Spill April 2010

Air Mass Fraction at Equinox for 95°W

Air Mass Fraction @ ST: 21-Sep-2011 04:00:00

- ~16 hours of scan time available each day from ~30°W to ~155° W.
- Scan Atlantic coastal
 deep ocean waters in early morning
- Scan Pacific coastal & deep ocean waters in late afternoon

11

10

9

8

6

5

4

3

2

0

Air Mass Fraction at Equinox for 95°W

- ~16 hours of scan time available each day from ~30°W to ~155° W.
- Scan Atlantic coastal
 deep ocean waters in early morning
- Scan Pacific coastal & deep ocean waters in late afternoon

Minimum Geo ocean color sensor requirements

	GOCI-II	GOCI
Temporal resolution	1 hour intervals	1 hour intervals
	8 times/day during daylight hours	8 times/day during daylight hours
Spatial resolution	< 250 m in local area mode	
	1,000 m in full disk mode	500 m
Spatial coverage	2,500 km in local area mode	
	12,500 km in full disk mode	2,500 km in local area mode
Spectral resolution	10 to ~40 nm	10 to ~40 nm
Spectral bands	15 bands	8 bands
	(1 UV, 9 visible, 2 NIR and 3 SWIR)	(6 visible, 2 NIR)
SNR	1,500	1,000