

Planned GEO Mission in Korea for Air Quality Measurements: GEMS(Geostationary Environmental Monitoring Spectrometer)

Jhoon Kim (Yonsei University

Global Environment Satellite Research Center

Contributors

GEMS Science and Engineering

Chang Hoi Ho (SNU) Jae H. Kim (PNU) Young Joon Kim (GIST) Jong Bum Lee (Saeasoft, (Kwang Mog Lee (KNU) Young Lee (KNU)

Rokjin Park (SNU) Seon Ki Park (EHWU)

Chul H. Song (GIST)

Jung Hun Woo (Konkuk University)

Young Sook Eom (CNU)

Sangsoon Yong (KARI)

Minho Lee, Sang Bum Ryoo (ME)

Sukjo Lee, Yuduk Hong (GERC, ME)

Chang Keun Song (GERC, ME)

More to invite...

Myung H. Ahn (KMA) Yu Hwan Ahn (KORDI) S.B. Choi, K.H. Yang

Contents

- 1. Introduction
- 2. COMS (Communication, Ocean color and Meteorology Satellite)
- 3. Next GEO Mission, MP-GEO SAT (Multi Purpose Geostationary Satellite)
- 4. Summary
- 5. Issues

Asia - important region in Global AQ

Both Anthropogenic and Natural Sources throughout the year

Anthropogenic

Biomass burning

Biogenic

Pollution

Asian dust

wild fires

sink change

Industry
Transportation
Mega Cities

Land use change
Desertification

Drought

Deforestation

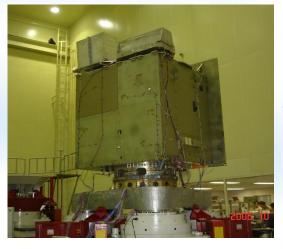
Population(>60%) – Social benefit

Monsoon

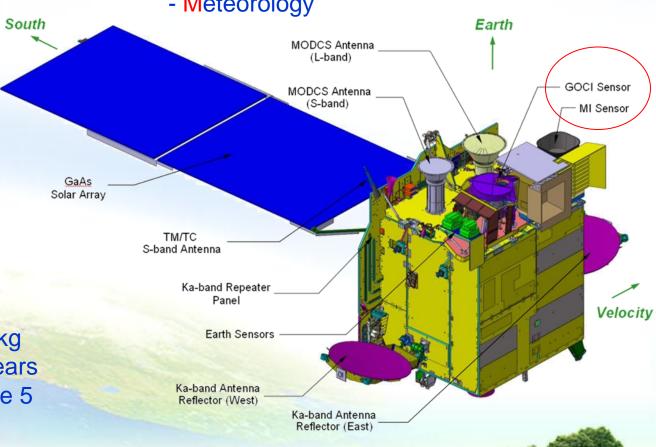
Typhoon

Tsunami

Tibetan Plateau

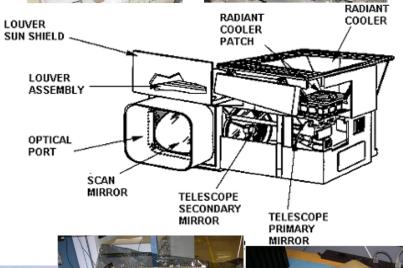

COMS

Mission:


- Communication
- Ocean Color

Meteorology

- Orbit: GEO (128.2°E)
- SI: KARI + Astrium
- Mass at launch <2497 kg
- Operational life: 7.7 years
- Launch vehicle: Ariane 5



Meteorological Imager(MI)

	MI					
Mass	144.6 Kg					
Volume	130x90x80 cm ³					
Spectral Band (µm)	0.63(0.55-0.75) 3.91(3.8-4.0) 6.7(6.5-7.0) 10.7(10.2-11.2) 12.0(11.5-12.5)					
Spatial Resolution	1 km (VIS) 4 km (IR)					
Coverage	Global					
SNR	~					
Temporal Resolution	30 min.					
Products	Cloud, snow cover, CSR, OLR, AMV, SST, LST, TPW, Fog, CTT, CTP, rain rate, AOD					

GEO Ocean Color Imager(GOCI)

	0.00	
	GOCI	2 2
Mass	83.3 Kg	
Spectral Band	412, 443, 490, 555, 660, 680, 745, 865 nm (8)	
Spectral Resolution	20 nm (B1~B5, B7) 10 nm (B6) 40 nm (B8)	
Spatial Resolution	500 m x 500 m Shutter cover	
Coverage	East Asia near Koresecondary stru	
SNR	~1000 Secondary stru	Cture Heater Screen Telescope radiator
Temporal Resolution	1 hour (8/day) Thermal screen Telescope	n+Y IRES
Products	Yellow substance turbirde ynterfa Chlorophyl suspended sedimen (f bipods)	
	Vegetation AOD, aerosol size, type	

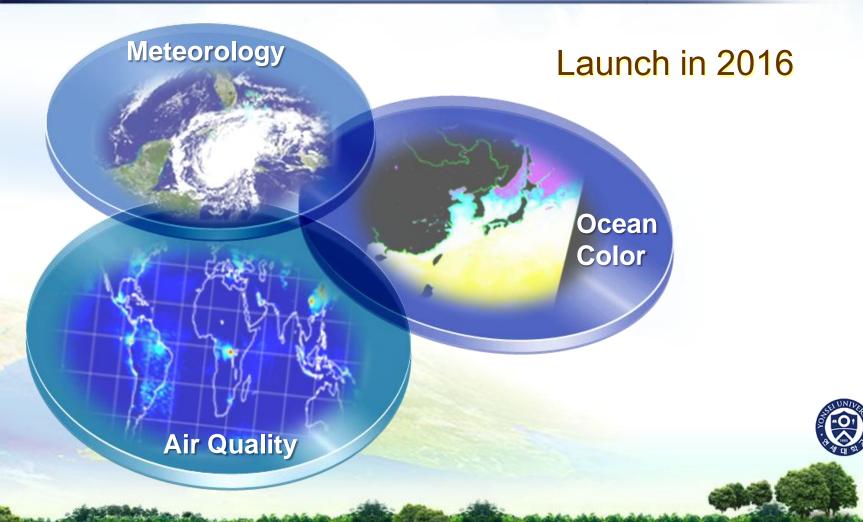
MP-GEO SAT Development Plane 환경부

- The continuity of COMS missions
 - COMS program : Launch at 2009, the predicted end of life in 2016
- For the continuous mission of meteorological and ocean color monitoring, the next satellite should be launched no later than 2016.

Feasibility Study of MP-GEO Mission

Feasibility study:

- Finished feasibility study of Geostationary Environment (AQ)
 Monitoring Mission
 - P.I.: Jhoon Kim (Yonsei University), 2008, ME
 - Recommended measurements of SO₂, NO₂, O₃ and aerosol using UV/Visible spectrometer from Geostationary Orbit
 - As an option, recommended measurements of CO, CO₂ and CH₄ using IR
 FTS from GEO
- Finished feasibility studies of meteorological and ocean color monitoring mission
- Finished feasibility study of next Geostationary Mission
 - P.I.: Y.K. Chang (Korea Aviation University), Aug. 2008 Feb. 2009, MEST
 - Recommended Atmospheric Environmental Monitoring Mission, together with Meteorological and Ocean Color Monitoring



Mission of Next GEO Satellite

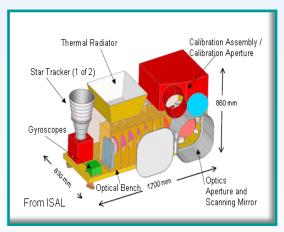
MP-GEO SAT after COMS

Environmental Mission Objectives

Air-quality:

- To provide global measurements with sufficient temporal resolution together with Meteorological mission
 - Globalization of tropospheric pollution
- To assess and forecast air quality
 - Monitoring, Validating CTM, improving accuracy
 - Emission Inventory from hourly measurements of concentration from space
- To monitor regional transport events
 - Transboundary pollution: pollution, Asian dust
- To understand long-term effect of aerosols in climate change
 - Aerosols and their precursors for long term

Social Benefit:


- Reducing economic loss by improving prediction of climate change
- Reducing medical costs and death rates through early warning of pollution events

GEMS(Geostationary Environment Monitoring Spectrometer)

Scanning UV/VIS Spectrometer (SUVS)

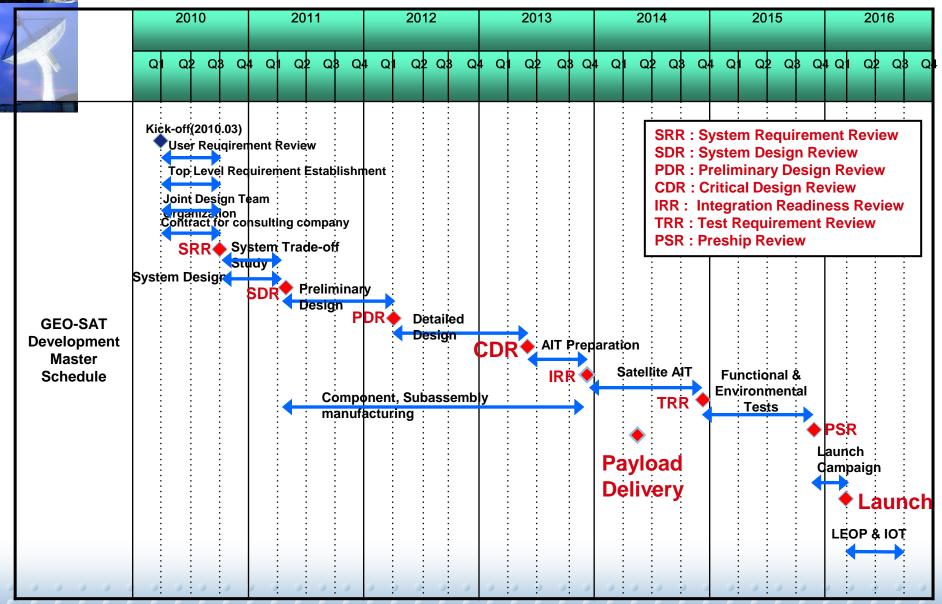
- Heritage from OMI
- Completed technical feasibility thru NASA IIP

Spectral I	Range	300-500 nm (Resolution: 0.8 nm)			
Spatial Res	solution	5 km(N-S)×15 km(E-W)			
Vertical Resolution		3~6km			
Global Coverage		1 hour			
SNR		1500:1 at 430nm			
Spec- ification	Power	<100 Watts			
	Weight	< 50 Kg			
	Volume	0.5 x 0.5 x 0.25 m ³			

(Bhartia, 2009)

Spectral Bands Requirements

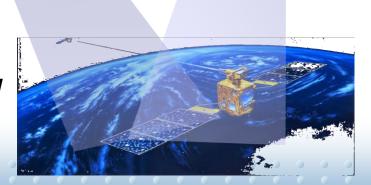
- 13 Bands (GOCI-1 : 8 Bands)
- Phytoplankton type verification, Nighttime Observation, Enhanced Atmospheric Correction Accuracy


Radiance: W/m²/um/sr

Band	Heritage	Band Center	Band width	Nominal Radianc e	Maximum Ocean Radiance	Saturation Radiance	Maximum Cloud Radiance	NEdL	SNR	Primary use	
1	GOCI-B1	412nm	20nm	100.0	150.0	152.0	601.6	0.100	1000	Yellow substance and turbidity	
2	GOCI-B2	443nm	20nm	92.5	145.8	148.0	679.1	0.085	1090	Chlorophyll absorption maximum	
3	GOCI-B3	490nm	20nm	72.2	115.5	116.0	682.1	0.067	1170	Chlorophyll and other pigments	
4	(KGOCI)	520nm	20nm							Red Tide	
5	GOCI-B4	555nm	20nm	55.3	85.2	87.0	649.7	0.056	1070	Turbidity, suspended sediment	
6	(KGOCI)	625nm	20nm							SS & Red Tide	
7	GOCI-B5	660nm	10nm	32.0	58.3	61.0	589.0	0.032	1010	Baseline of fluorescence signal, Chlorophyll, suspende d sediment	
8	GOCI-B6	685nm	10nm	27.1	46.2	47.0	549.3	0.031	870	Atmospheric correction and fluorescence signal	
9	GOCI-B7	745nm	20nm	17.7	33.0	33.0	429.8	0.020	860	Atmospheric correction and baseline of fluorescence signal	
10	(KGOCI)	765nm	20nm							Aerosol Properties, Atmospheric Properties	
11	GOCI-B8	865nm	40nm	12.0	23.4	24.0	343.8	0.016	750	Aerosol optical thickness, vegetation, water vapor reference over the ocean	
12		905nm	40nm							Atmospheric Properties, Cloud Properties	
13		650nm	500nm	6.5E-6						Night Band (Night time fishing boat activities)	

(Ahn, Yu Hwan)

Master Schedule of MP-GEO SAT



MP-GEO SAT Configuration

- GEMS and GOCI-2 now have more volume and mass budget
 - Can increase capability in spatial resolution or spectral coverage
- Mission : Air Pollution Monitoring
 Meteorological observation
 Ocean Color monitoring
- Mass: Dry mass 1280.9 kg Launch mass 2640 kg
- ◆ Power : In-orbit 1500 W, Transfer orbit 1100 W
- Mission Life: 10 years

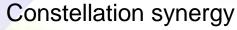
Satellite Orbit Options

	LEO	LEO Constellation	GEO	GEO Constellation
Altitude	< 1000 km	←	> 36000 km	←
Time Resolution	Several to 24 hrs	(+) ←	Up to minutes	←
Spatial coverage	Global	-	60S- 60N (lat.), ~120° in longitude	60S- 60N (lat.), Global
Viewing Options	Nadir, Limb, Occultation	←	Nadir only	←
Techniques	Multispectral, multi-angle, polarization, stereo-viewing	←	Multi-spectral only	Multi-spectral, stereo- viewing,

Global Environmental Monitoring

Constellation of GEO Mission to study Air Quality

SUVS GEO-CAPE (America)


GEMS MP-GEO (Asia Pacific)

GMES S4 UVN MTG (Europe)

- Improving spatial and temporal coverage
- Monitoring globalized pollutants
- sharing data and science
- supporting QA and CAL/VAL of instruments

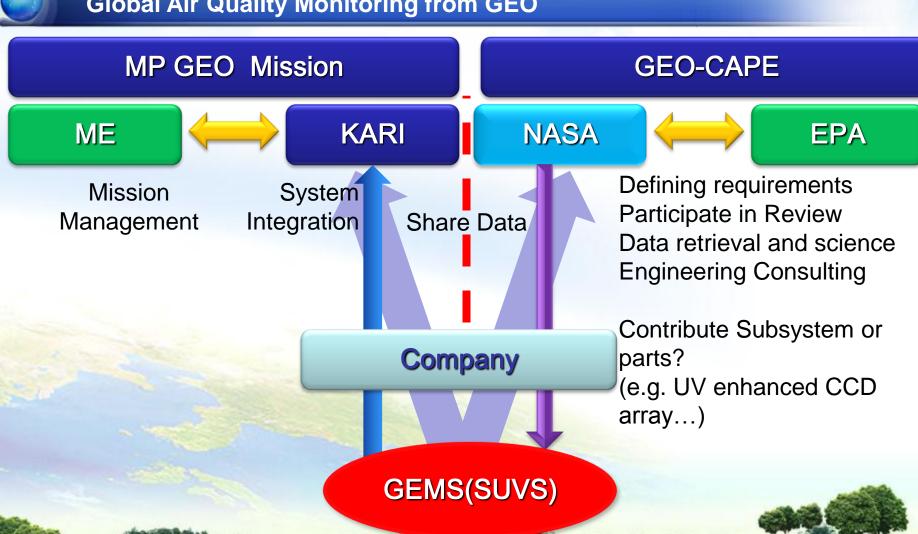
Status of MP-GEO SAT

Global Environmental Satellite Program Office

- Established in June, 2009 by ME (P.M.: Sukjo Lee, GERC, ME)
- First phase funding started for requirements of science and instrument, algorithm development strategy, and evaluation of social benefit
- Research Center established at Yonsei University, in March, 2009

Collaboration discussed at the Korea(MEST)-U.S.A.(NASA) Bilateral Meeting

- Delegation from NASA on April 21-22, 2009, at KARI, Daejon, Korea
- "Satellites and instruments of mutual benefit" for innovative observations of the global integrated Earth system, including:
 - geostationary satellite: air quality and ocean color observation
- Recommended to establish joint KARI-NASA working group (WG)
- Next U.S.A.-Korea Bilateral Meeting planned at the end of August, 2009


Currently under Preliminary Investigation of Financial Budget

- Requested USD 600 M for the mission
- Final decision pending due to technical feasibility and social benefit

Collaboration between KARI and NASA

Summary

- Suggest collaboration between GEO-CAPE and MP-GEO SAT for trans-Pacific AQ monitoring in:
 - defining requirements of science and instruments
 - data processing and sciences
 - quality assurance of the same instruments including calibration and validation
 - securing budget from respective government
 - demonstrating and proving technical feasibility in GEO
- Flight opportunities in GEO over Asian region :
 - KARI provide spacecraft with launch service
 - KARI and ME are responsible for the GEMS payload,
 - and/or NASA provide support for the payload
 - including science, consulting, quality assurance
 - (participating in reviews), and contributing subsystem

Issues

Need Agreements between NASA and MEST/ME/KARI:

- to discuss and collaborate in setting up requirements of science and instruments in depth
- to secure funding from government
 - . Major issues in technical feasibility
- to receive OMI data in real time for data processing and demonstration

Flight opportunities in GEO over Asian region :

- KARI provide spacecraft with launch service
- KARI and ME are responsible for the GEMS payload,
- and/or NASA provide support for the payload
- including science, consulting, quality assurance
- (participating in reviews), and possibly contributing subsystem

THANK YOU

