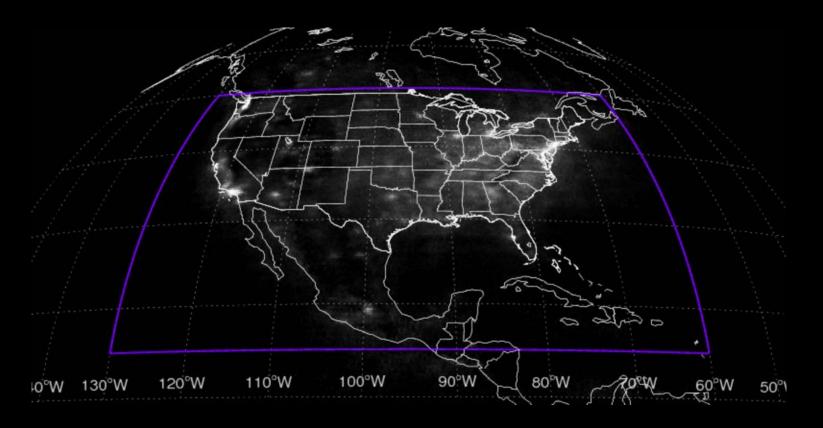


Optical Depths for Typical GEO Measurement Geometry

Required Concentrations* European Requirements[‡]


Molecule	Vertical Column [mol cm ⁻²]	Sensitivity Driver	
O ₃	2.4×10 ¹⁶ 10-25%	~10ppbv in PBL; reality (profiling) is more complicated 10% of PBL; 20% of free trop; 25% of troposphere	
NO ₂	3.0×10 ¹⁵ 1.3×10 ¹⁵	distinguish clean from moderately polluted scenes 10% of PBL; 20% of free trop; $1.3 \times 10^{15} \equiv$ background	
SO ₂	1.0×10 ¹⁶ 1.3×10 ¹⁵	distinguish structures for anthropogenic sources 20% of PBL; 20% of free trop; $1.3 \times 10^{15} \equiv$ background	
НСНО	1.0×10 ¹⁶ 1.3×10 ¹⁵	distinguish clean from moderately polluted scenes 20% of PBL; 20% of free trop; $1.3 \times 10^{15} \equiv$ background	
CHO-CHO	4.0×10 ¹⁴ n.a.	tracking of most urban diurnal variation n.a.	

*In PBL. One of two issues needing the most work (traceability from AQ reqs and modeling) ‡AQ requirements from CAPACITY; Mission Requirements for Sentinel 4&5: Generic at present $(1.3 \times 10^{15} = 1 \text{ ppbv} \text{ in } 0.5 \text{ km})$. Need further consideration of actual AQ requirements and flowdown to measurement requirements

Scalable Strawman North American Version

15° - 50°N, 60° - 130°W (parked at 0°N, 95°W)

SZAs ~ 0° - 70° VZAs $\leq 57^{\circ}$ Spatial solution 10 10 km² footprints Sampling every <¹/₂ hour (27 min)

Sizing for 10 10 km² Footprint, 1 Second Integration Time

Molecule	Rad	φ cm ⁻² px ⁻¹	RMS	φ px⁻¹	<i>a</i> ×Eff
O ₃	3.57×10 ¹²	2.51×10^{4}	1.40×10 ⁻³	1.28×10^{5}	5.09
NO ₂	6.25×10 ¹²	4.87×10 ⁴	8.99×10 ⁻³	3.09×10 ³	0.063
SO ₂	2.94×10 ¹²	2.06×10^{4}	7.25×10 ⁻³	4.76×10 ³	0.230
НСНО	5.65×10 ¹²	3.97×10 ⁴	5.51×10 ⁻⁴	8.23×10 ⁵	20.8
CHO-CHO	6.22×10 ¹²	4.85×10 ⁴	3.56×10 ⁻⁴	1.98×10^{6}	40.7

Formaldehyde (HCHO) is the driver for almost any conceivable choice of requirements! (Unless VOCs are considered unimportant, in which case O_3 would be the driver, with the above as a low estimate).

20.76 cm² is a 16-cm diameter telescope @ 10% optical efficiency (GOME, a much simpler instrument, is 15–20% efficient in this wavelength range).

IR needs (CO, O₃, climate gases) must be addressed.

Outstanding Needs

Science Requirements

(S/N, geophysical, spatial, temporal) from sensitivity and modeling studies (OSSEs), providing traceability for AQ forecast improvement and other uses.

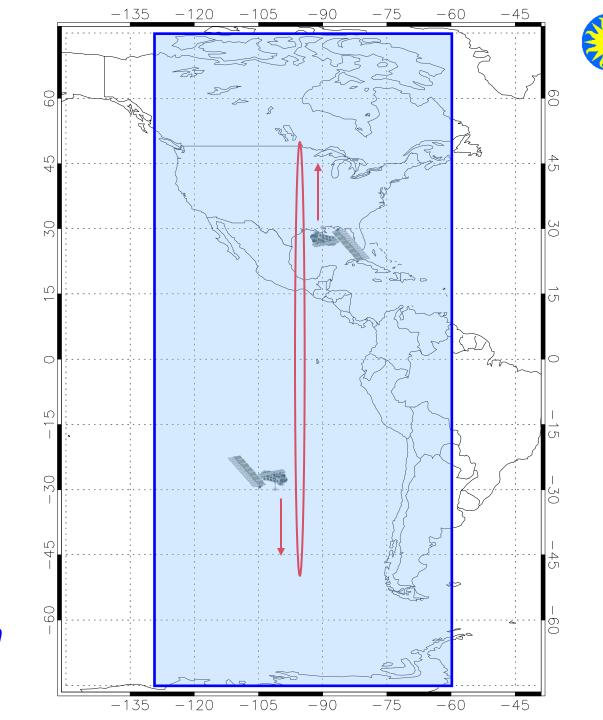
Unless things change a lot, *HCHO will be the driver* for instrument requirements. Then address trade space.

Instrument Design

Reducing "smile", enabling multiple readouts, increasing efficiency, optimizing ITF shape ...

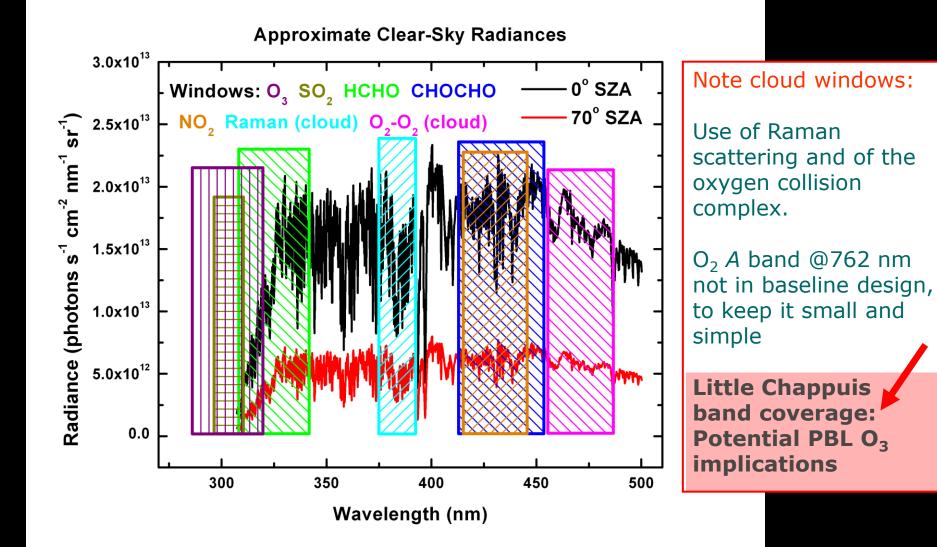
GEO instrument is not just a super-OMI with CMOS/Si detectors instead of CCDs. Minimal geostationary requirements imply scanning instead of a pushbroom and they imply getting many more spectra onto a rectangular detector than OMI and OMPS have obtained.

Instrument optical and spectrograph design, *including fully-informed choice of detector type*, is the single most important outstanding issue in demonstrating the feasibility of geostationary pollution measurements. *N.B. PBL O₃ instrument drivers!*



An alternative (not in baseline): Inclined 24 hour orbits!

Better viewing zenith angles at high latitudes


Possibility to measure same location at different VZAs → profile information

(Thanx, RVM!)

Radiative Transfer Modeling and Fitting Studies

Measurement Requirements

Molecule	Fitting Window [nm]	Vertical Column [mol cm ⁻²]	Slant Column [mol cm ⁻²]	
O ₃	315-335	2.4×10 ¹⁶	5.0×10 ¹⁵	
NO ₂	423-451	3.0×10 ¹⁵	1.1×10 ¹⁵	
SO ₂	315-325	1.0×10 ¹⁶	1.5×10 ¹⁵	
НСНО	327-356	1.0×10 ¹⁶	2.3×10 ¹⁵	
CHO-CHO	433-465	4.0×10 ¹⁴	1.5×10^{14}	

The slant column measurement requirements come from full multiple scattering calculations, including gas loading, aerosols, and the GOME-derived (Koelemeijer *et al.*, 2003) albedo database, and assume a 1 km boundary layer height.

Scalable Strawman Instrument Characteristics (1)

Spatial Resolution and Sampling

Latitude/longitude limits are \sim 3892 km N/S and 7815-5003 km E/W (6565 average), or about 390×657 10×10 km² footprints.

- Measure 400 spectra N/S in two 200-spectrum integrations (each on two 1024² detector arrays – 1 UV and 1 visible).
- 2.5 seconds per longitude (2×1 s integration, 0.5 s step and flyback) → total sampling every < ½ hour (27 min).

Detectors

Rockwell HyViSi TCM8050A CMOS/Si PIN (as used by OCO)

- 3×10⁶ e⁻ well depth; will need several rows (or readouts) per spectrum to reach the necessary statistical noise levels.
- Complicated by brightness issues; can't always have full wells.
- Conclusions from OCO characterization of these detectors must be fully understood.

Scalable Strawman Instrument Characteristics (2)

Spectral Characteristics

200 spectra on each of two 1024² arrays; each spectrum uses four detector rows (800 total out of 1024).

- Channel 1: 280-370 nm @ 0.09 nm sample, 0.36 nm resolution (FWHM).
- Channel 2: 390-490 nm @ 0.1 nm sample, 0.4 nm resolution (FWHM); includes O₂-O₂ @ 477 nm.
- 4 samples per FWHM virtually eliminates undersampling for a symmetric instrument transfer (slit) function [Chance *et al.*, 2005].

Pointing

to 1 km = 1/35,800 = 6 arcsecond (readily achievable)*

Telescope size

Size optics to fill sufficiently in 1 second ($\approx 1 \text{ cm}^2$ (GOME size) $\times \sqrt{1.5}$ (GOME integration time) $\times 35,800 \text{ km} / 800 \text{ km} = 55 \text{ cm}$ "telescope" optics).

More realistically

*Spitzer points to 1 arcsecond 0^{th} order, correctable to ≤ 0.1

Sizing for 10 10 km² Footprint, 1 Second Integration Time

Molecule	〈Rad 〉	φ cm ⁻² px ⁻¹	RMS	φ px⁻¹	<i>a</i> ×Eff
O ₃	3.57×10 ¹²	2.51×10^{4}	1.40×10 ⁻³	1.28×10^{5}	5.09
NO ₂	6.25×10 ¹²	4.87×10^{4}	8.99×10 ⁻³	3.09×10 ³	0.063
SO ₂	2.94×10 ¹²	2.06×10^{4}	7.25×10 ⁻³	4.76×10 ³	0.230
НСНО	5.65×10 ¹²	3.97×10^{4}	5.51×10 ⁻⁴	8.23×10 ⁵	20.8
CHO-CHO	6.22×10 ¹²	4.85×10^{4}	3.56×10 ⁻⁴	1.98×10^{6}	40.7

 $\langle Rad \rangle$ Minimum clear-sky radiance, cross-section weighted (phot s⁻¹ nm⁻¹ sr⁻¹ cm⁻²)

 ϕ cm⁻² px⁻¹ # photons cm⁻² pixel⁻¹ @ instrument in 1 second; 10×10 km² \rightarrow 7.80 ×10⁻⁸ sr solid angle

RMS Fitting RMS required for the minimum detectable amount = 1 / required S/N

- $a \times Eff$ Telescope collecting area (cm²) × overall optical efficiency

Major Tradeoffs and Questions

Tradeoffs:

#samples (footprint) vs. sensitivity (S/N) vs. integration time vs.
geographical coverage vs. max SZA vs. optical size:

- 5 5 km² footprints in 1/2 hour with a 32 cm diameter telescope, if the instrument is 10% efficient (Spatial resolution: rows vs. # readouts; could do 5×5 km² on 1 chip with multiple readouts).
- Spatial Nyquist sampling must be carefully addressed.

Questions:

Are latitude and longitude sampling necessarily the same? Is constant sampling necessary?

Options and extensions (near-term GEO-CAPE attention!):

MODIS channels for aerosols? (TOMS AAI is automatic, but little else is operational.)

- o OMI aerosol products should be reviewed. **PANCHROMATIC!**
- o Should include polarization-resolved measurements;
- Several such UV channels will improve PBL O₃ [Hasekamp and Landgraf, 2002a,b; Jiang *et al.*, 2003].

Visible (Chappuis) band to further improve PBL O_3 ? (Discrete?)

Major Tradeoffs and Questions

Everything is Debatable

this is why it is a strawman, <u>but</u> we must show why alternatives are better.