

An Imaging Fourier Transform Spectrometer for the Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

Annmarie Eldering Richard Key Stanley Sander

Jet Propulsion Laboratory California Institute of Technology

23 September 2009

Introduction

- JPL's experience with Earth science missions can contribute to the success of the GEO-CAPE mission
- The science capability of FTS instruments has been successfully demonstrated by other earth science missions and needs to be considered for GEO-CAPE

 A cursory mission concept study was done by JPL with internal funds to identify characteristics of a GEO-CAPE mission using a single FTS instrument, the Panchromatic Fourier Transform Spectrometer (PanFTS)

GEO-CAPE is a Decadal Survey Tier 2 mission that will advance science in two important areas, coastal ecosystems, and air quality. By having both measurements on the same platform, aerosol information derived from the air quality measurements can be used to improve ocean ecosystem measurements.

Identification of human vs. natural sources for aerosols and ozone precursors

Dynamics of coastal ecosystems, river plumes, tidal fronts

Observation of air pollution transport in North, Central, and South America

Predict track of oil spills, fires, and releases from environmental disasters

Detection and tracking waterborne hazardous materials Coastal health

Science Questions

Atmospheric Science

- What are the emissions of gases and aerosols important for air quality and what are the processes controlling these emissions?
- How do atmospheric transport, chemical evolution, and deposition determine tropospheric composition over scales ranging from urban to continental?
- How do we improve air quality forecast and assessment models?
- How do changes in air quality drive climate forcing on a continental scale?
- How does intercontinental transport affect air quality?

Ocean Science

- How do short-term coastal and open ocean processes interact with and influence larger scale physical, biogeochemical and ecosystem dynamics?
- How are variations in exchanges across the landocean interface related to changes within the watershed, and how do such exchanges influence coastal and open ocean biogeochemistry and ecosystem dynamics?
- How do natural and anthropogenic changes including climate-related forcing impact coastal ecosystem biodiversity and productivity?
- How do airborne-derived fluxes from precipitation, fog and episodic events such as fires, dust storms & volcanoes significantly affect the ecology and biogeochemistry of coastal and open ocean ecosystems?
- How do episodic hazards, contaminant loadings, and alterations of habitats impact the biology and ecology of the coastal zone?

Geostationary orbit enables sub-diurnal day and night regional to continental observations

Atmospheric Science

Understand and improve capability for predicting changes in the ozone layer, climate forcing, and air quality associated with changes in atmospheric composition

Tropospheric NO₂ (August 2004) from SCIAMACHY (Courtesy K. Chance, Harvard-Smithsonian Center for Astrophysics)

Ocean Science

Understand and improve predictive capability for changes in coastal ocean ecosystems, and how ocean ecosystems and biogeochemical cycles will respond to and affect global environmental change

Terra/MODIS April 2000 SeaWiFS October 1997
Chesapeake Bay Estuary

Atmospheric Measurements Rationale JPL

- GEO-CAPE builds on air quality science developed over the past two decades using satellite data from instruments like TOMS, GOME, TES, and OMI

 GEO-CAPE data will improve the fidelity of chemical models for forecasting air quality
- Broad spectral sensitivity enables simultaneous measurements of key air quality species and crucial vertical sensitivity for O₃, CO, SO₂, HCHO, HNO₃, and aerosols
- High spectral resolution enables vertical sounding of tropospheric ozone as is currently done by the AURA/ Tropospheric Emission Spectrometer (TES)
- Frequent temporal sampling allows sub-diurnal resolution which is important for measuring rapidly time varying photochemical species such as O₃, NO₂, HCHO
 - Many important air quality species go from minimum to maximum concentration levels in about four hours
- Modest ground sampling distance, especially coupled with frequent temporal sampling, is needed to differentiate concentration levels in urban, suburban, and in the background, and is also compatible with regional scale models used by EPA, NOAA, and researchers
- Vertical information on ozone into the boundary layer is crucial for understanding ozone processes that impact air quality and climate

- GEO-CAPE builds on long heritage of ocean color observations from space
- Improved spectral resolution will enable improved determination of carbon species (biogeochemistry) and of phytoplankton functional groups (biogeochemistry and ecosystem structure)
- Frequent temporal sampling allows dramatically improved viewing opportunities (given intermittent and moving cloud cover) as well as an opportunity to follow rapid dynamics, such as tidal mixing, storms, river plumes
 - A given population of phytoplankton can double its numbers about once per day; frequent observations are needed to measure the rapid response of phytoplankton to changes in their environment
- High spatial resolution, especially coupled with frequent temporal sampling, enables unprecedented quantification of local and regional dynamics
- Information from atmospheric composition measurements will lead to
 - Improved atmospheric correction, a key constraint to current ocean color measurement
 - Novel understanding of the rates and impact of atmospheric deposition
 - Coupled to spatial and temporal resolution, unprecedented coverage of the time course of dust storms, industrial plumes, etc. and their impact on ecosystem structure and function

Science Objectives

Atmospheric Science

- Air quality assessments several times daily and forecasting to support air program management and public health
- Measure emission of ozone and aerosol precursors including human versus natural sources
- Monitor pollutant transport into, across, and out of North, Central, and South America
- Detect, track, and predict the location of extreme pollution events such as large puff releases from environmental disasters, and plumes from wildfires

Ocean Science

- Quantify response of marine ecosystems to short-term physical events, such as passage of storms and tidal mixing
- Assess importance of variability in coupled biological-physical coastal ecosystem models
- Monitor biotic and abiotic material in transient surface features, such as river plumes and tidal fronts
- Detect, track, and predict the location of hazardous materials, such as oil spills, ocean waste disposal, and harmful algal blooms
- Detect floods from various sources including river overflows

Antecedent Missions and Measurements of Complementary Value

Atmosphe	eric Science	Ocean	Science				
Mission	Measurements	Mission	Measurements				
Solar Backscatter Ultraviolet (SSBUV) Instrument	Column ozone	Coastal Zone Color Scanner (CZCS)	Ocean color: chloroph				
TOMS (many versions)	Column ozone, absorbing aerosol index	Ocean Colour and Temperature Scanner (OCTS)					
GOME, GOME-2	O ₃ , NO ₂ , BrO, OCIO Column	SeaWiFS					
SCHIAMACHY	O ₃ , NO ₂ Column	Ocean Color Imager (OCI)	Ocean color: chlorophyl particulate organic carbo particulate inorganic				
OMI	O ₃ , NO ₂ Column	MODIS on Aqua and Terra	carbon, atmospheric aerosol				
TES	$CO, O_3, H_2O, HDO Profiles CH_4, NH_3, CH_3OH Column$	Visible Infrared					
ΜΟΡΡΙΤΤ	CO Profiles CH₄ Column	Imager Radiometer Suite (VIIRS)					

Previous missions provided infrequent observations from LEO; GEO-CAPE will enable frequent measurements of rapidly changing atmospheric chemistry and coastal ocean biogeochemistry

Atmospheric Composition Measurements

Retrieval of important atmospheric composition species and chemistry requires hourly sampling with broad spectral sensitivity and high spectral resolution

Ozone Vertical Profiles Are Crucial

Although ~ 90% of atmospheric ozone is in the stratosphere and only 10% in the troposphere, the tropospheric ozone is important for many reasons including it: (a) acts as a greenhouse gas and influences the radiative forcing of the climate system (b) serves indirectly as a 'detergent' that removes gases such as carbon monoxide and methane

(c) is a pollutant at the surface

Tropospheric ozone profiles are crucial for understanding ozone processes such as production, loss, photochemical, etc.) in:

- vertical transport from the stratosphere
- atmospheric radiative forcing
- long range transport and subsidence
- urban and regional "smog"

Ozone vertical profiles are crucial for understanding ozone processes that impact climate and air quality, and which threaten the public health and welfare of current and future generations

Ocean Color Measurements

/avelength ("color")	Wavelength (nm)*	Required SNR**	Information
	393	250	Surface/Cloud Temperature
	412	880	Dissolved organic matter (organic carbon)
	443	840	Chlorophyll absorption maximum
	490	800	Pigment absorption (Case 2), K (490)
	510	790	Phytoplankton, suspended sediment
	555	750	Pigments, optical properties, sediments
	620	840	Turbidity, suspended sediment
	670	1010	Atmospheric correction and sediments
	681	1090	Chlorophyll fluorescence
	705	700	Atmospheric correction, red edge
	754	590	Oxygen absorption reference
	760	570	Oxygen absorption reference, ocean aerosols
	775	540	Aerosols, vegetation
	865	520	Aerosols correction over ocean
	890	170	Water vapor absorption reference
	936	250	Water vapor absorption, vegetation
	1240	600	Land/Cloud/Aerosols properties
	1640	300	Land/Cloud/Aerosols properties
	2130	110	Land/Cloud/Aerosols properties

Water clarity is a performance indicator for Chesapeake Bay restoration efforts. This MODIS 250-meter ground sampling distance image shows significant details (turbid waters are red; clear waters are blue) in the rivers and main body of the bay. High resolution hourly imagery like this can resolve tides (which reverse every six hours), diel winds (such as the land/sea breeze), river runoff, upwelling and storm winds that drive coastal currents.

* 50 cm⁻¹ spectral sampling

** SNR requirements derived from MODIS and VIIR requirements

Characterization of the dynamic coastal ocean environment requires hourly observations yielding MODIS quality measurements (or better)

Eldering, Key, Sander - GEO-CAPE Workshop - 23 September 2009

Measurement Synergy

 $\begin{array}{ccc} L_{t}\left(\lambda\right) &=& L_{r}\left(\lambda\right) + L_{a}\left(\lambda\right) + L_{ra}(\lambda) \\ \hline \\ 0 & \hline \hline 0 & \hline \\ 0 & \hline \hline 0 & \hline \\ 0 & \hline 0 & \hline \hline 0 & \hline 0 & \hline \\ 0 & \hline 0 &$

- Total radiance observed by satellite is composed of 5-10% ocean signal and 90-95% atmosphere signal
- Atmospheric and ocean surface scattering effects must be accurately modeled and removed
- Atmospheric information derived from air quality measurements can be used to improve ocean water leaving radiance measurements

Atmospheric correction is critical for ocean color retrievals

GEO-CAPE Measurement Objectives

Atmospheric Science

 Measure several species with high temporal and vertical resolution to determine tropospheric chemistry

- Measurements for air quality applications are required every 1 to 3 hours over populated regions, with ground sampling distance of 7 km (nadir)
 - Ozone: observe 1-3 hrs, vertically resolved in troposphere (sensitivity to boundary layer needed)
 - NO₂: observe 1-3 hrs, column measurements
 - CO: observe 1-3 hrs, vertically resolved in troposphere
 - NH₃: observe 1-3 hrs, column measurements (precursor for atmospheric aerosol)
 - CO₂ and CH₄ (key green house gasses): observe 1-3 hrs, vertical profiles in lower troposphere
 - HCHO and CH₃OH (proxies for VOCs): observe 1-3 hrs, column measurements
- Long range transport studies can use relaxed temporal and spatial measurements, but chemical weather forecasts require vertical profile information

Ocean Science

- Sea Surface Reflectance measurements for
 - Concentration of chlorophyll, suspended and dissolved matter
 - Concentration of particulate inorganic carbon (PIC) and particulate organic carbon (POC)
 - Concentration of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) will be estimated from regionally-specific algorithms

- 250 m ground sampling distance (nadir)
- Temporal sampling sufficient to resolve processes in coastal dynamics which are dominated by tides and winds (sub-diurnal)

Sept. 2, 2007 12:00:00 Sept. 4, 2007 12:00:00 Current imagery like MODIS-AQUA are days apart

Observing Scenario Flexibility

- An imaging spectrometer acquires a spectrally-resolved image of a scene by holding the line-of-sight fixed on the scene for the period of time needed to record interferograms of the scene
- From geosynchronous orbit the field-of-regard (roughly the full earth disk) can be divided into a grid of scenes defined by the size of the field-of-view
- Be able to point the instrument field-of-view anywhere within the field-of-regard in any sequence/pattern desired
- Need independent wide-field and narrow-field observations to simultaneously measure atmospheric composition and ocean color
- A square pixel array maps the scene with spatial sampling defined by the optical system design
 Field-of-regard

hyperspectral data cube

Spatial Sampling Approach

The GEO-CAPE mission concept of operations requires simultaneous wide-field and narrow-field observations

Day and Night Observing

The observing scenario can be tailored to optimize day and night measurements

Wide-Field Observations Example

From geostationary orbit, PanFTS wide-field observations can sample ~50 patches per hour with a 900 x 900 km instantaneous field-of-view using a 128 x 128 pixel array which provides a ground footprint with 7 km ground sampling distance per pixel at nadir

Eldering, Key, Sander - GEO-CAPE Workshop - 23 September 2009

Narrow-Field Observations Example JPL

From geostationary orbit, PanFTS narrow-field observations can sample ~277 patches per hour with a 300 x 300 km instantaneous field-of-view using a 1200 x 1200 pixel array which provides a ground footprint with 250 m ground sampling distance per pixel at nadir

Eldering, Key, Sander - GEO-CAPE Workshop - 23 September 2009

Pollution Event Observations Example JPL

PanFTS has tremendous observing scenario flexibility because wide-field and narrow-field observations can be independent allowing simultaneous sampling of any pattern of patches

Capability	Wide-Field	Narrow-Field	Comments
Field of regard	50° N to 45° S latitude -35° to -125° longitude	50° N to 45° S latitude -35° to -125° longitude	Approximately 11,000 km by 11,000 km
Spatial sampling	7 km ground sampling distance at nadir	250 m ground sampling distance at nadir	Drives fore optics (telescope) design, and focal plane pixel count
Spectral range	0.26 µm to 15 µm	0.35 μm to 2.1 μm	Drives camera design, and interferometer materials and coatings
Spectral resolution	0.05 cm ⁻¹	50 cm ⁻¹	Drives interferometer design
Spectral SNR	1000	1000	Drives instrument design & observing scenario
Interferogram dynamic range	2 ¹⁶	2 ¹⁵	Drives ADC design
Sampling interval	Approximately hourly	Approximately hourly	Drives data management design
Lifetime	5 years	5 years	Drives reliability

Mission & Payload Summary

- Science
 - Satisfy GEO-CAPE science objectives for both coastal ocean biogeochemistry and atmospheric composition
- Mission duration
 - 2 years lifetime design (single string with selective redundancy)
 - 5 year lifetime goal and consumables
- Geostationary orbit near 95 degrees west longitude
 - Simple, repeating, hourly mapping observing scenario
- One instrument (Panchromatic Fourier Transform Spectrometer)
 - Wide-field UV-Vis-SWIR-MWIR high spectral resolution imaging spectrometer mapping North and South America approximately hourly
 - Narrow-field Vis-SWIR high spatial resolution coastal ocean and special event imaging spectrometer
- Continuous downlink to dedicated ground station
 - No science data stored onboard spacecraft
 - Direct data interface from instrument to telecom subsystem (bent pipe downlink)
 - Dedicated receiving station (e.g. Goldstone with backup at White Sands)
 - Minimal data latency to support applications like chemical weather forecasting
- Science data processing, archive and distribution at JPL

The PanFTS flight instrument architecture integrates wide-field and narrow field spectrometers

Flight PanFTS Wide-Field Architecture JPL

The PanFTS flight instrument design leverages successful experience with past instruments such as TES on AURA and FTUVS at the TMF

JF. Blavier 6/16/09 Eldering, Key, Sander - GEO-CAPE Workshop - 23 September 2009

Flight PanFTS Narrow-Field Architecture

JF. Blavier 7/8/09 Eldering, Key, Sander - GEO-CAPE Workshop - 23 September 2009

~1.2m

- For flight packaging, add 30% margin on optical layout to accommodate remaining instrument items such as structure, electronics, etc.
 - Height: 120 x 1.3 ~ 156 cm
 - Length: 130 x 1.3 = 169 cm
 - Width: 120 x 1.3 = 156 cm
- Line-of-sight pointing is accomplished with a 2 axis pointing mirror at the entrance to the optical train
 - Hexapod for line-of-sight pointing

PI M-824 Compact 6-Axis-Positioning System

PI S-330 Piezo Tip/Tilt-Platform

 Fine pointing is accomplished with a 2 axis tip/tilt stage for the small fold mirror M3

J. Wu 7/26/09 Eldering, Key, Sander - GEO-CAPE Workshop - 23 September 2009 Pointing mirror

~1.2m

~1.3m

Flight PanFTS C&DH Architecture

7/9/09 Eldering, Key, Sander - GEO-CAPE Workshop - 23 September 2009

Repeated Daily Operational Cycle

- Instrument operates continuously drawing different power levels during day and night
 - Nighttime average (Wide-Field Spectrometer MWIR only) is: 361+41 = 402 W
 - Daytime average (all systems collecting / transmitting data) is: 496+166 = 662 W
- Data comes from instrument continuously but at different rates during day and night
 - Nighttime average (no reflected solar radiation detectable) = 44 Mb/s (only MWIR data)
 - Daytime average (reflected solar radiation in the field of view) = 804+499 = 1,303 Mb/s

Telecommunications Architecture

- The HGA is body fixed in an orientation that points it to the dedicated ground station while the S/C maintains its nominal nadir-pointed orientation
- The S/C will be able to keep the HGA pointed within 0.2 degrees of the ground station while taking science data
- 500 MHz of spectrum in the near-Earth Ka-band (25.5-27 GHz) will be available for the high rate downlink
- Downlink will use 8 PSK modulation with Square Root Raised Cosine (SRRC) pulse shaping (roll-off factor of 0.35) and use two cross-polarized channels
 - Allows 1 Gsps per polarization to fit in 450 MHz [Reference D. Lee et al. "A Gb/sec Ka-band Demo using a Reconfigurable FPGA Module"]
 - For uncoded 8PSK with a BER of 1E-5, a threshold Eb/No of 13.5 dB is assumed
 - Additional 3 dB is assumed for system/implementation losses
- Dedicated ground antenna assumptions:
 - 6 m dish with 62 dBic gain at ~26 GHz
 - System noise temp of ~300 K, which would not require much cooling of the LNA equipment
 - Station can receive both LCP and RCP simultaneously and support up to 1 Gbps on each polarization
 Station supports the modulation and pulse shaping scheme described above
- S/C elevation angle at the ground station is > 45 degrees, keeping atmospheric attenuation below 1 dB (based on 99.8% worst case attenuation at Goldstone)
- S-band system with LGAs will provide near 2pi steradian coverage and meet all tracking, uplink, and engineering telemetry downlink requirements

D. Morabito 7/30/09 Eldering, Key, Sander - GEO-CAPE Workshop - 23 September 2009

Calibration Architecture

Periodic calibration views

Internal black body hourly

Direct lunar once a month

Solar via diffuser plate once a day

Pointing Architecture

- Spacecraft always remains nadir pointed; wide and narrow-field systems have separate and independent line-of-sight pointing mirrors that use pointing knowledge provided by the spacecraft
 - Wide-field pointing needed for 60 second observation
 - Control: ±258 arcsec 3σ per axis R/P (0.072°, one-twentieth of 1.43° FOV)
 - Knowledge: ± 206 arcsec 3σ per axis R/P (0.057°, which is 1 mrad)
 - Stability: ±4 arcsec over 60 sec 3σ per axis R/P (stay within one-tenth pixel)
 - Narrow-field pointing needed for 8 second observation
 - Control: ±172 arcsec 3σ per axis R/P (0.048°, one-tenth of 0.48° FOV)
 - Knowledge: ± 120 arcsec 3σ per axis R/P (0.033°, which is 0.58 mrad)
 - Stability: ±0.14 arcsec over 8 sec 3σ per axis R/P (stay within one-tenth pixel)
 - Slew requirements to support calibration and step/stare scan strategy
 - Worst case re-point from one edge of the field of regard to the other = 17.2° slew
 Slew and settle in < 1 min, with no change to spacecraft orientation
 - Slew and settle during step/stare scan:
 - 1.43° in < 7 seconds for wide-field; 0.48° in < 5 seconds for narrow-field.
- Point the boresight of a 1-meter fixed Ka-band high gain antenna to within 0.2° (720 arcsec) 3σ Small variations in spacecraft orientation relative to pade an allowed to point HCA
 - Small variations in spacecraft orientation relative to nadir are allowed to point HGA
- Solar arrays track the sun with an independent pointing system within the bus

R. Kinsey 7/30/09 Eldering, Key, Sander - GEO-CAPE Workshop - 23 September 2009

Thermal Control Architecture

 Instrument radiator provides continuous supplemental cooling to maintain 180K instrument cooled zone temperature

The next generation of the NOAA GOES (Geosynchronous) weather satellite will use an active cryocooler. The Advance Baseline Imager (ABI) uses a pulse tube cooler manufactured by NGST with two separate cold heads. One cold head cools the Mid-Wave/Long-Wave IR focal plane to 60K, and the remote second coldhead cools the optics and the Visible/Near IR focal plane to 200K.

Spacecraft Bus Options

Heritage Commercial Bus with Modifications

Boeing 601

Recent missions - GOES N-O-P

GD SA-200HP

OSC STAR Bus

Recent missions - GLAST - Coriolis – Swift

Recent missions - MEASAT-3a – AMC-21 - THOR 5

A spacecraft used for this study is for illustration purposes only, there are several buses that could satisfy the GEO-CAPE mission

SA-200 Series Standard Modular Spacecraft

Specifications/Performance Standards*

	SA-200B	SA-200S	SA-200HP
Bus Dry Mass: Std Config	90 kg	128 kg	354 kg
Payload Mass: Std Config	100 kg	50 kg	666 kg
Max Accommodated to Da	e 127 kg	59 kg	2888 kg
Redundancy	Single string with selecte	ed/functional redundancy	Partial to full redundancy
Design Lifetime	1 - 3 י	years	3 - 10 years
Solar Array Power @EOL: St	d 330 W	280 W	2000 W
Max to Da	e 505 W	503 W	3852 W
Attitude Control to Date:	Spin or 3-axis stabilized w/wheels, RCS backup	3-axis stabilized w/wheels	3-axis stabilized w/wheels, RCS backup
Knowledge, Max 3σ Erro	or as low as144 arcsec	as low as 11.1 arcsec	as low as 0.14 arcsec
Control, Max 3σ Erro	or as low as 504 arcsec	as low as 200 arcsec	as low as 0.21 arcsec
Jitter, Max 3	σ as low as 15.7 arcsec/sec	as low as 6.2 arcsec	as low as 0.255 arcsec/sec (≥ 0.021, 50µs, 25-2000Hz)
Pointing Modes	Inertial, sola	r, nadir, offset, point trackin	g, maneuvering
Onboard Propellant to Date	none	to 112.7 kg	to 358.5 kg
Structural Configuration	Six and eight-sided stru	ictures with honeycomb pa	nels and aluminum frames
Payload Interfaces	Externally accessible, bo	olt-on mounting; open arch	itecture electrical interfaces
PL Data Storage & DL to Date	≤ 109	6 Gbits storage; ≤ 740 Mbp	os DL rate
Launch Vehicles Used to Date	Pegasus XL, Minotaur	Pegasus, Scout, Minotaur	Delta II, Titan II, Minotaur
Missions Used On	MightySat II.1, RHESSI, C/NOFS	MSTI-1, MSTI-2, MSTI-3, NFIRE	DS1, Coriolis, Swift, Streak, GLAST, GeoEye-1, STSS
Procuring & Using Agencies	AFRL, SMC/SD (Det12), NASA/UCB	SMC, NASA/JPL, MDA	NASA/JPL, SMC/SD (Det12), NRL, NASA/GSFC, PSU, DARPA, GeoEye
Bus Delivery Times		25 to 42 months	

Eldering, Key, Sander - GEO-CAPE Workshop - 23 September 2009

Spacecraft System Architecture

The science payload is one fixed instrument hard mounted to the spacecraft bus

Launch Concept

Atlas V (401) launch from Kennedy Space Center; GTO 4,725kg

LV Capability (kg)	Propellant mass (kg)	S/C dry mass CBE (kg)	S/C dry mass allocation (kg)	S/C dry mass margin (kg)	Margin (%)	LV Margin (kg)	LV Margin (%)
1513	358.5	776.7	1156	445	38%	239.4	16%

- GOES-like Super-Synchronous Transfer Orbit to geostationary orbit, 95° W longitude
- Delta-V requirements
 - ~ 1840 m/s for GSO insertion (this is conservative given GOES-M was ~1784 m/s)
 - \sim 15 m/s for statistical cleanup of the injection
 - ~ 53 m/s per year for stationkeeping (maintaining period and inclination)
 - \sim 10 m/s to put spacecraft in disposal orbit at the end of the mission
- 30 day commissioning period to deploy and outgas all components, power-up (but not open up) the instrument; day 25 open instrument cover and begin instrument calibrations / commissioning

Eldering, Key, Sander - GEO-CAPE Workshop - 23 September 2009

Space Environment Protection

Target Body: Earth	
Cruise Duration:	years
Cruise Radiation per year:	krad/year
Cruise Radiation Total:	0 krad
Orbiting Duration:	2 years
Orbiting Radiation per year:	19 krad/year
Orbiting Radiation Total:	38 krad
Surface Duration:	years
Surface Radiation per year:	krad/year
Surface Radiation Total:	0 krad
Total Radiation Dose:	38 krad
Radiation Dose Margin:	2
Total Radiation Design Dose:	76 krad

- All parts will be screened for radiation sensitivity: goal is > 100 krad hard behind 100 mils of Al

 Spot shielding will be used for additional protection of any critical / sensitive components
- Parts will be screened for SEU latch-up sensitivity: goal is latch up immune LET > 100 MeV-m²/mg; upset error rate < 1×10⁻¹⁰ errors/bit-day
- A comprehensive flight system grounding architecture will minimize charging effects
- Debris / micro-meteoroid hazard should be low

The geo radiation environment is well known and shielding methods are proven

Ground System Architecture

Instrument is always taking data and delivering it to the spacecraft telecom system

System	Daytime	Nighttime	Daily Iotal
Wide-Field	804 Mb/s	44 Mb/s	4.6 TB
Narrow-Field	499 Mb/s	0	2.7 TB
Total	1303 Mb/s	44 Mb/s	7.3 TB

- No onboard storage of science data
- Science data transmitted continuously to dedicated receiving station
 - Ka-band for science data downlink (10⁻⁵ BER; >3 dB link margin)
 - S-band for command and telemetry up/downlink
- Receiving station transmits raw data to JPL
- JPL provides science processing, archive, and distribution

Ground System Functional View

Science Data Products

Atmospheric Science Data Products

Level 1B

Calibrated, geolocated radiances for each scene

Level 2

- Tropospheric columns of NO₂, HCHO, NH₃, CH₃OH, CH₄ hourly over North America and South America
- Tropospheric profiles of $\rm O_3$ and CO over same region
- Total column SO₂ for events
- Aerosol optical depth
- All gas L2 data includes averaging kernel and error covariance matrix

Level 3

 Maps of all columns measured within 1 hour time intervals for AQ forecasting – gridded column and profile data at 2 levels

Ocean Science Data Products

Level 1B

Calibrated, geolocated radiances for each scene

Level 2 – Ocean color

- Normalized Water Leaving Radiances (full spectra)
- Chlorophyll-a concentrations
- Suspended sediments
- Chlorophyll fluorescence line height
- Colored dissolved organic material (CDOM)
- Detritus
- Particulate organic carbon (POC)
- Dissolved organic carbon (DOC)

Level 3 – Daily, weekly and monthly binned and mapped products

Level 4 – Carbon-flux products

- Primary productivity
- Rate of photochemical breakdown of DOC
- Air-Sea CO₂ exchange
- Export production

- JPL in-house project
 - Class B mission
- RSDO commercial spacecraft bus with upgrades
 - Bus vendor also provides spacecraft I&T and flight operations support
- Launch services provided by KSC via NLS launch vehicle contract
 - Launch timeframe: 2018
 - 2015:Q3 PDR / technology cutoff (5 years available to validate any needed technologies)
- Service agreement for DSN ground station support
- Science processing, archive and distribution provided by JPL

Costing Methodology

- Project schedule (phase A-D) based on data from similar missions

Mission		Duration (months)													
WISSION	Pre-Phase A	Phase A	Phase B	Phase C	Phase D	A-D									
GRACE	54	12	15	18	15	60									
CloudSat	78	18	9	33	24	84									
OSTM	71	21	27	15	18	81									
000	26	15	30	21	24	90									
Aquarius	59	15	33	36	21	105									
SMAP	117 (54)	12	12	15	21	60									

- Standard NASA Project WBS per NPR 7120.5D
- Team X provided project life-cycle cost estimates for options studied
 - NASA Instrument Cost Model (NICM) to estimate instrument cost and compared to similarly complex earth science instruments
 - PanFTS instrument mass based on the AURA / Tropospheric Emission Spectrometer (TES) "as-built" master equipment list with deltas incorporated where PanFTS is different
- Project cost reserve levels (30% Phase A-D, 15% Phase E)
- Launch vehicle options and costs from KSC Launch Services office
- No outside contributions (total mission cost borne by NASA)

Notional GEO-CAPE Schedule

	Year		2009		2010		20	11		2012	2	2	013		20)14		20	15	2	016		20)17		20	18		20	19		2	2020)		2021	1		20	20		20)21	
ID	Task Quarter	Q1	Q2 Q3 Q4 Q	1 Q	2 Q3 Q4	Q1 Q	2 Q3	Q4 Q′	1 Q2	Q3 Q	4 Q1	Q2 Q3	3 Q4	Q1 Q	2 Q3	Q4 (Q1 Q2	2 Q3	Q4 Q1 (Q2 Q	3 Q4	Q1 (Q2 Q3	Q4 (21 Q	2 Q3	Q4 (Q1 Q	2 Q3	Q4	Q1 C)2 Q	3 Q4	4 Q1	Q2 (23 Q	!4 Q1	1 Q2	2 Q3	Q4	Q1 (22 Q3	Q4	Q1
1	Project Phase				Р	re-Ph	nase	A					P	hase	A	Ph	nase	В	Phas	e C			1	Phas	e D					P	hase	εE					E	xter	ndec	l Mi	ssio	'n		
21	GEO-CAPE Mission Pre-Phase A Study	12	15 18 21 24	4 27	7 30 33	36 3	9 42	45 48	8 51	54 5	7 60	63 66	5																															ĺ –
22	GEO-CAPE Mission Workshop I	\diamond	First GEO-C	CAP	E Missio	on Wo	orksh	ор																																				
24	GEO-CAPE Mission Workshop II			S	econd G	EO-C	CAPE	Missi	ion W	/orks	hop																																	ĺ –
25	Science Objectives					Lev	el 1 :	Scienc	e Re	quire	emen	ts Def	ined																															ĺ –
26	Concept of Operations					\diamond	Obse	erving	Scen	ario	Defir	ned																																1
27	Mission Architecture						 F	light-G	Groun	d Ele	emen	ts / Int	terfac	es D)efine	ed																												
28	Spacecraft Concept							Fligh	nt Sys	stem	Con	ceptua	al Des	sign	Com	plete	d																											
29	Technology Needs / Readiness								Pro	ject L	_evel	1 Rec	quirer	nent	s Est	tablis	hed																											
30	Project Cost, Schedule, Risks									\diamond	Lifec	ycle C	osts	& Bu	dget	Estin	nates	s Re	viewed																									
31	Mission Concept Definition Documented										∕⊳N	lission	Con	cept	Repo	ort Co	omple	eted																										ĺ –
32	Mission Concept Review (MCR)											Miss	sion C	Conc	ept F	Reviev	w																											
33	Formulization Authorization Document / KDPA											•	🔷 Ар	prov	al to	Begi	n Foi	rmula	ation Ph	nase																								ĺ –
34	Phase A Project Definition												1	2 3	3 4																													ĺ –
39	Science Instrument AO Released													Scie	ence	Instr	umer	nt AC) Relea	sed																								
40	Mission Partners / Suppliers Selected													\diamond	Majo	r Par	tners	: / Sı	uppliers	Sele	cted	inclu	uding	Instr	ume	nts																		
41	Science Payload Development															5	Scier	nce l	Payload	d Dev	velop	ome	nt		\diamond	Deliv	ery to	o AT	ĽO															
53	Preliminary Project Plan / KDPB															🗘 Apj	prova	al to	begin P	hase	B/F	Preli	minar	y De	sign																			
54	Phase B Preliminary Design															<mark>1</mark>	2 3	4																										
55	PDR / Technology Cutoff																	\diamond	Prelim	inary	Des	ign F	Revie	N																				ĺ –
56	Mission Conformation Review / KDPC																		Appro	val to	o Beg	gin Ir	nplen	nenta	ition	Pha	se																	1
57	Phase C Final Design																		1 2	3 4																								ĺ –
58	CDR (Phase D Start)																				¢c	ritica	I Des	ign F	levie	w																		
59	Subsystems Fabrication																				1	2																						
60	Subsystems I&T																						3 4																					ĺ –
61	System Integration Review																						<	Sy	sterr	n Inte	gratio	on F	Readi	ness	s Re	view	/											
62	Project System I&T (ATLO)																							5	6 7	7																		
63	Pre-Ship Review																									¢р	re-Sł	nip F	Revie	w														
64	Launch Operations																									8																		
65	Phase D Schedule Margin																											F	Phase	e D s	Sche	dule	e Ma	argin				Τ						
66	Launch																											٠	Laun	ch								Τ						Ē
67	Phase E - Prime Mission																													Prin	ne Mi	issio	n											
68	Phase E - Extended Mission																																				ſ	Exte	ndeo	d Mis	sion			

Project Phase	Pre A	Α	В	С	D	A-D	Е
Duration (mo)	66	12	12	12	24	60	24

MCR gate products are defined in the SMD Management Handbook and NASA NPR 7120.5D (Program and Project Management) which invokes NASA NPR 7123 (Systems Engineering)

Instrument	MISR	MLS	TES	PanFTS (WF+NF)	GMO	PanFTS (WF)	GeoMAC
Mass (kg) (actual or CBE+30%)	148	453	385	436 (335+30%)	1286 (989+30%)	245 (188+30%)	456 (351+30%)
Power (W) (actual or CBE+30%)	75	544	334	865	930	645	790
~Size (cm)	90 90 130	150 200 300	100 130 140	156 169 156	450 300 120	117 104 78	294 145 90
Phase A-D Schedule (months)	80	74	54	54		48	42
Cost (\$M) (in FY07\$)	115 (95x1.208)	152 (136x1.121)	179 (160x1.121)	321 (247+30%)		180 (138+30%)	349 (268+30%)

Mission Architecture Options (FY07 \$M)

It may be more cost effective to do separate science missions for atmosphere and ocean

Eldering, Key, Sander - GEO-CAPE Workshop - 23 September 2009

- GEO-CAPE mission architecture study to assess alternative mission designs such as a phased implementation and hosted payloads that offer potential cost savings and risk reduction while maintaining full science capability / return
- Observing scenario studies to indentify the most scientifically valuable ones which can guide development of a baseline concept of operations
- GEO-CAPE / PanFTS mission study to investigate engineering designs that offer potential cost savings, risk reduction, and keep full science capability
- Investigate alternative lower cost, lower risk PanFTS instrument designs that could launch on shared or hosted opportunities which also supports a phased implementation of GEO-CAPE
- PanFTS flight instrument packaging and design study to refine engineering designs that lead to improved science capabilities while reducing cost and risk
- Investigate the use of commercially available FPAs to assess potential cost savings, lower technical risk, and higher instrument maturity level

- The PanFTS instrument could accomplish all GEO-CAPE science objectives (atmospheric composition and coastal ocean biogeochemistry)
- No changes are needed for the PanFTS instrument as designed for GEO-CAPE to measure several green house gases and dynamical tracers
- PanFTS IIP and In-Pixel Digitization ACT will demonstrate technical maturity needed for flight instrument design
- Mission and instrument trade studies could identify design alternatives with lower cost and lower technical risk