

Improved Observations of Earth and Space Weather From GOES-R Satya Kalluri,

US Department of Commerce - NOAA NASA/GSFC GOES-R Ground Segment Project Greenbelt, MD Satya.Kalluri@noaa.gov

Presentation Outline

- Program Overview
 GOES-R Improvements
 Ground Segment Organization
 Ground Segment Architecture
- Product Generation

GOES Satellite Mission

- Hurricanes
- Severe storms
- Flash floods
- Input to weather models, forecasts and warnings
- Fire and smoke products for air quality monitoring and forecasting and fire fighting
- Sea surface temperature monitoring for fisheries and climate
- Winds for aviation
- Solar imagery for communication satellites, utility companies, and astronaut safety
- Environmental data collection-buoys, rain gauges...
- Search and Rescue
- GOES data shared within the western hemisphere

GOES Launch Schedule

 GOES R series is a follow-on to the existing line of NOAA's geostationary weather satellites. GOES-1 launched in 1975

> GOES I series [8-12]: Operational since 1994 GOES N series [13]: N launched May 24 2006, O launched26th June 2009, P planned launch 2010

Based on an availability analysis of the current GOES I and N-series, a GOES-R launch is required in the 2015 timeframe to maintain mission data continuity

2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
. <u>I</u>								GOES 1	1 (L) (GOES V	Vest					
						GOES [·]	12 (M)	GOES	East							
			On-o	rbit storag	e					G	OES 1:	3 (N)	On-orb	oit Spare		
						On-orbit s	storage						GOES	0 On-oi	bit che	ck out
(LA)							On	orbit stora	ge	· · · · ·					GO	ES P
0									GO	ES R		On-orbit s	storage			
N. ST	ot			a come o	a., 12	S. Comment		-	- V Terra		GOES	S	On-orbit s	torage		

Note: Satellites are labeled with letters on the ground and changed to numbers on-orbit

- GOES mission requires two on-orbit operational satellites and one on-orbit spare
- GOES-West location in GOES-R series to be 137°W instead of current 135°W
 - Eliminates conflicts with other satellite systems in X-band frequency at 135°W

* Note: Satellites are labeled with letters on the ground and changed to numbers on-orbit

GOES-R Measurement Objectives

Purpose	Sensor
• Provide environmental data to produce routine meteorological analyses and forecasts; mesoscale and synoptic scale storm prediction.	Advanced Baseline Imager
• Provide continuous full-disk lightning measurements for storm warning and nowcasting.	Geostationary Lightning Mapper (GLM)
 Imaging of the solar EUV emissions Locate coronal holes for forecasts of recurring geomagnetic activity Locate flares for forecasts of solar energetic particle events 	Solar Ultra Violet Imager (SUVI)
• Measure the magnitude of solar X-ray and EUV irradiance	Extreme Ultra Violet Sensor/X-Ray Sensor Irradiace Sensor (EXIS)
• Measurements of the electron, proton, and heavy ion fluxes	Space Environmental In- Situ Suite (SEISS)
• Magnetic field measurements to detect space plasma storms and substorms	Magnetometer

GOES-R Improvements in Earth Observations

NASA

 GOES-R provides significant increases in spatial, spectral, and temporal resolution of products

GOES-R Improvements in Solar and Space Weather Observations

ABI has improved spatial, spectral and temporal coverage over earlier imagers.

This data and information is considered Proprietary property of ITT Space Systems Division of ITT Industries, Inc., and may not be released to third parties without express written permission of ITT Space Systems Division of ITT Industries, Inc.

9

High Resolution Full Climatology

Global distribution of lightning from a combined nine years of observations of the NASA OTD (4/95-3/00) and LIS (1/98-12/04) instruments

Hugh Christian - UAH

NOAA

GOES-R GLM Mission Objectives

• Provide continuous full-disk lightning measurements for storm warning and nowcasting

- Provide sufficient temporal resolution to allow tracking of each lighting flash within a specific storm cell and calculation of its optical center over time
- Provide longer warnings of tornadic activity
- Accumulate a long-term database to track decadal changes in lightning activity
- "Overarching Requirement"
- Post-processing data product to capture 70% of the lightning flashes
- False alarm rate less than 5%

Hugh Christian - UAH

Improvements in Solar Observations

SUVI will provide better discrimination of temperature and density at higher spatial resolution compared to SXI

4 of the 6 SUVI bands are similar to those on STEREO SECCHI EUVI

Images Courtesy: http://secchi.nrl.navy.mil

Ground Segment FUNCTIONAL OVERVIEW

FARRS

aer

Honeywell

wyle

ARES

Ground Segment Contract

- Harris Corporation, Government Communications Systems Division (GCSD), Melbourne, FL was selected as the Ground Segment core (prime) contractor on May 27, 2009
 - Development of Core Ground Segment
 - Mission Management
 - Enterprise Management
 - Product Generation
 - Product Distribution
 - Internal (i.e., intra-site) telecommunications

Total Ground Segment integration and checkout
 Integration of affiliated Ground Segment developments, including GAS and antennas
 Interfaces to external systems, including CLASS and ADRS
 Transition to NOAA Operations

GOES-R Notional Architecture

Mission Management

• Functionality

Space-Ground communications (uplink/downlink receive & monitor), including antenna and front-end equipment

- TLM & CMD
- Unique Payload Services (LRIT, EMWIN, DCS, SARSAT)
- GOES Rebroadcast (GRB)

Command generation and telemetry data processing Raw (instrument) data processing

Mission scheduling and planning

Orbit & Attitude determination and maneuver planning Product Monitor

- Image Navigation and Registration (INR) monitoring
- Routine instrument calibration support

Instrument raw data temporary storage

Telemetry data archive, engineering analysis system, and remote access to telemetry

Integrate

- Flight Software (FSW) management
- Simulators

Provide status messages to Enterprise Management

Product Generation

• Functionality

- Process Level o data to calibrated and navigated products (Level 1b)
- Monitor Radiometric and Image Navigation & Registration Performance
- Assemble GOES-R Rebroadcast data set and send to MM for uplink
- Assemble Emulated GVAR (eGVAR) data sets and send to GOES-N interface
- Receive ancillary data files

Process Level 1b data to Level 2 and higher-order products Send Level 1b and Level 2+ products to PD Maintain calibration database

Provide status messages to Enterprise Management

GOES-R Product List

Aerosol Detection (incl Smoke & Dust)	Clear Sky Masks	Upward Longwave Radiation: Surface
Suspended Matter / Optical Depth	Radiances*	Upward Longwave Radiation: TOA
Volcanic Ash: Detection & Height	Downward Solar Insolation: Surface	Ozone Total
Cloud & Moisture Imagery (KPP)	Reflected Solar Insolation: TOA	SO2 Detection
Cloud Optical Depth	Derived Motion Winds	Flood / Standing Water
Cloud Particle Size Distribution	Fire / Hot Spot Characterization	Ice Cover / Landlocked: Hemispheric
Cloud Top Phase	Land Surface (Skin) Temperature	Snow Depth
Cloud Top Height	Snow Cover	Surface Albedo
Cloud Top Pressure	Sea Surface Temperature	Surface Emissivity
Cloud Top Temperature	Energetic Heavy lons*	Vegetation Fraction: Green
Hurricane Intensity	Magnetospheric Electrons and Protons:	
	Low Energy*	Vegetation Index
Lightning Detection: Events & Flashes*	Magnetospheric Electrons and Protons:	
	Medium & High Energy*	Currents
Rainfall Rate / QPE	Solar and Galactic Protons*	Currents: Offshore
Legacy Vertical Moisture Profile	Geomagnetic Field*	Sea and Lake Ice: Age
Legacy Vertical Temperature Profile	Solar Flux: EUV*	Sea and Lake Ice: Concentration
Derived Stability Indices	Solar Flux: X-Ray*	Sea and Lake Ice: Extent
Total Precipitable Water	Solar Imagery: UV*	Sea and Lake Ice: Motion
Aerosol Particle Size	Cloud Type	Probability of Rainfall
Aircraft Icing Threat	Convective Initiation	Rainfall Potential
Cloud Ice Water Path	Enhanced "V"/ Overshooting Top Detection	Total Water Content
Cloud Imagery: Coastal	Low cloud and Fog	Absorbed Shortwave Radiation: Surface
Cloud Layers / Heights & Thickness	Turbulence	Downward Longwave Radiation: Surface
Cloud Liquid Water	Visibility	
ABI	GLM	SEISS
Magnetometer	EXIS	SUVI
The second second second	OPTIONAL PRODUCTS	* GRB

Product Performance Responsibilities Masa

GS Contractor

- Implement algorithms such that products meet <u>all</u> product performance parameters
- Meet product refresh rate requirements
- Meet vendor-allocated ground latency requirements
- Meet Product Measurement Precision requirements

Instrument Vendor

- Develop Lıb (and GLM) algorithms
- In conjunction with the GS contractor, responsible for meeting Mapping Accuracy requirements In conjunction with AWG, responsible for meeting
 - Product geographic coverage/conditions
 - Product vertical resolution
 - Product horizontal resolution
 - Product measurement range
 - Product measurement accuracy

AWG

Develop L₂₊ algorithms such that products meet parameters described above Provide IV&V for Lib algorithms

Product Distribution

• Functionality

- Distribute GRB to Mission Management for RF Transmission Distribute data and products (L1b/L2+) from PG to operational users
 - Translate products into appropriate formats
 - Provide a user access point for products
 - Temporary store products for User Access
- Distribute selected data, products (Lo, L1b, L2+), ancillary data, algorithms, and associated metadata to CLASS for long-term archive
- Distribute emulated GOES Variable Format (eGVAR) to GOES-N ground segment for RF transmission through GOES-N series satellites

Provide status messages to Enterprise Management

Enterprise Management

Functionality

Enterprise Management is the overarching function that monitors and reports status on the entire GS

- All GS elements (hardware and software)
- Networks

Communication links and antenna operations
 Provide real time textual and graphical display of system performance and status
 Supervise primary and backup site functions, and the interfaces to external systems
 Provide incident tracking and status
 Supervise enterprise IT security

More info at:

http://www.goes-r.gov/

GOES-R program Scientist: Dr. Steve Goodman Steven.j.Goodman@noaa.gov