
Mission Architecture Concepts for Time-Resolved Science

Option 1: NASA GEO spacecraft

Dedicated, long life GEO spacecraft Orbit 35,786 km stationary orbit above Earth Examples: GOES, TDRSS

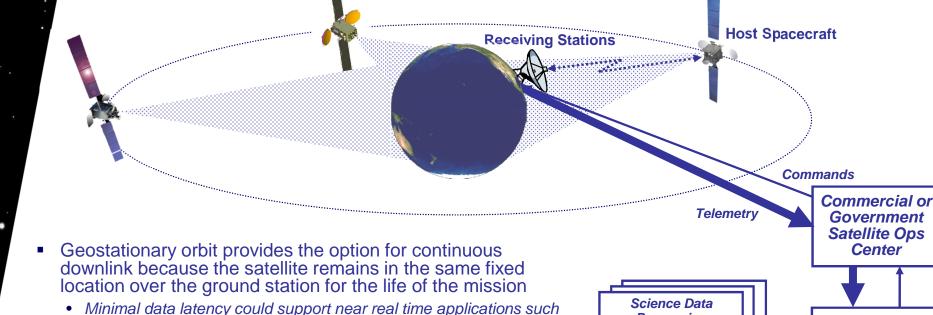
Option 2: LEO Swarm

Multiple inter-calibrated copies 6-10 spacecraft and launches to Leo Examples: IRIDIUM, GPS

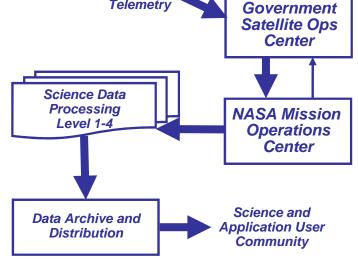
Option 3: NASA payload hosted on commercial GEO spacecraft

Frequent launches to GEO Excess capacity (mass and power) Examples: FAA's WAAS, Air Force CHIRP

GEO-CAPE Planning Payload

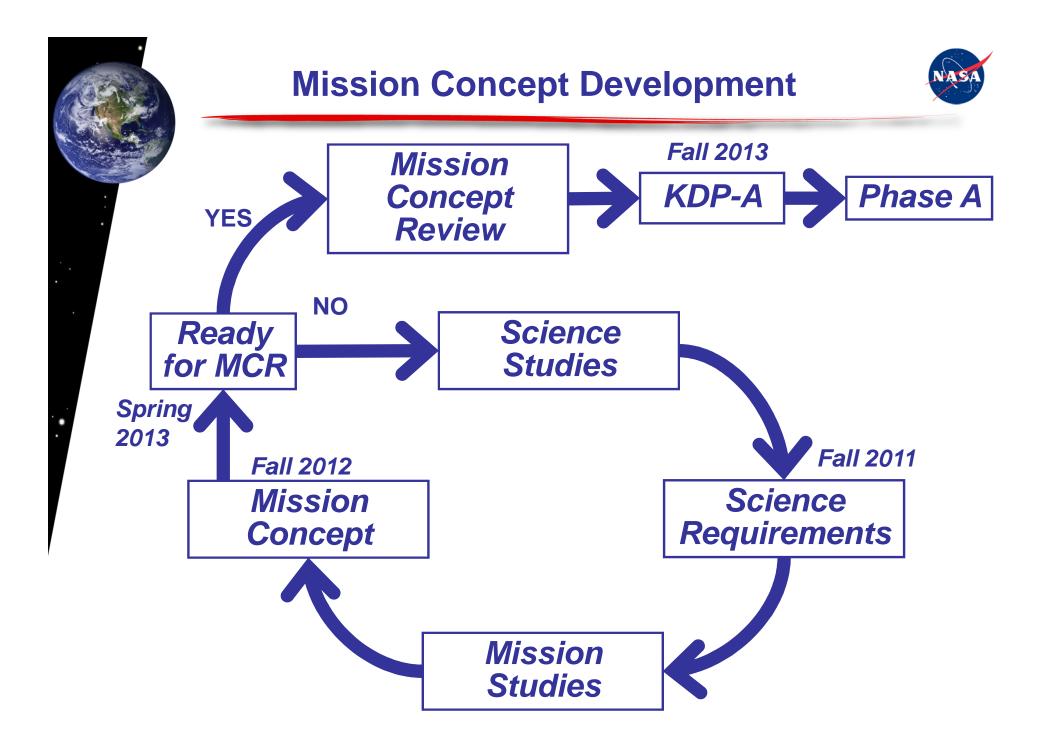


The GEO-CAPE planning payload is representative of the instrumentation that could accomplish the science measurements defined in the STMs


	Small	Medium	Large			
GEO-CAPE Notional Planning Payload Instrumentation	CISP					
	CISR	GeoMAC	CEDI			
Science	Atmospheric	Composition	Coastal Ecosystems			
Instrument Concept	Gas-Filter Correlation Radiometer	UV-Vis Spectrometer	UV-Vis-NIR Spectrometer			
Spectral Range (µm)	2.3 and 4.67	0.30 to 0.48	0.34 to 0.90 1.225 to 2.160			
Size: L x W x H (m)	0.75 x 0.4 x 0.5	1.7 x 0.8 x 0.9	2.1 x 0.95 x 2.8			
CBE Mass (kg)	45	140	621			
CBE Power (W)	120	233	392			
Data Rate (Mbps)	40	16.4	88.4			

Hosted Payload Concept of Operations

- Minimal data latency could support near real time applications as chemical weather forecasting
- The hosted payload approach provides the option to purchase telemetry services from the satellite operator (if it is a comsat)
 - Continuous direct data transfer from instrument to host comsat transponders (bent pipe downlink)
- NASA operates science processing, archive, and distribution



Mission Implementation ROM Cost Estimates

		Cost (FY'11 \$M)									
WBS	PROJECT ELEMENT	Small	Medium	Large	HPL Total	DM Total ²					
01	Project Management	7	13	30	50	47					
02	Mission Systems Engineering	4	13	30	48	47					
03	Safety & Mission Assurance	2	8	19	29	29					
04	Science	8	14	34	57	57					
05	Science Payload	42	90	239	371	421					
06	Spacecraft	0	0	0	0	403					
07	Mission Operations	6	15	39	61	97					
09	Ground Data System	2	6	16	23	38					
10	Systems I&T	5	0	0	5	32					
	Hosted Payload Related Costs ³	35	68	142	246	0					
	Subtotal without Reserves	112	227	550	889	1,173					
	Reserves	34	69	166	268	354					
	Subtotal with Reserves	146	296	716	1,158	1,527					
08	Launch Vehicle / Services	0	0	0	0	313					
11	Education and Public Outreach	2	2	4	7	7					
	Total Life-Cycle Cost (FY'11 \$M)	147	298	720	1,165	1,846					

The hosted payload, phased implementation mission architecture reduces mission cost and risk, and delivers science data sooner

GEO-CAPE MCR Preparations

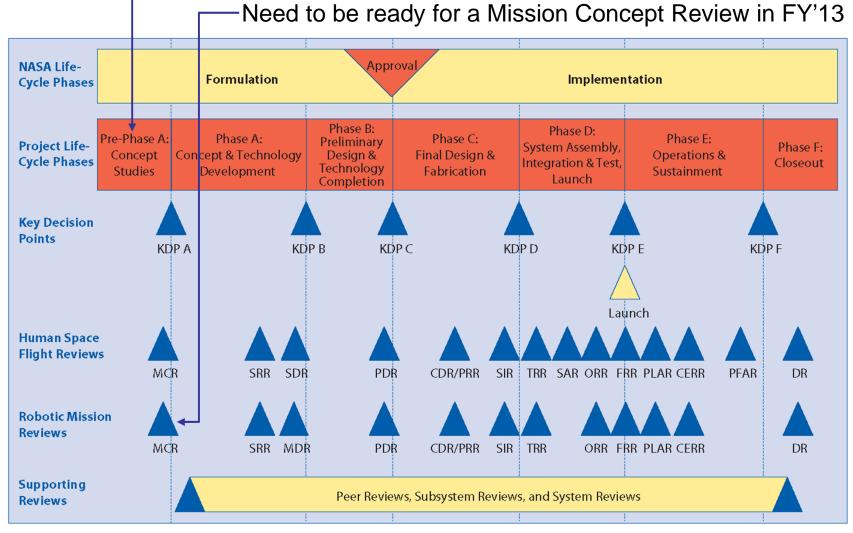
 Establish mission performance metrics (success criteria, aka measures of effectiveness – MOEs and associated Key Performance Parameters - KPPs)

- Conduct trade studies
 - Science requirements, to identify the significant cost vs. performance parameters
 - Mission risk (identify cost vs. reliability drivers)
 - Technology alternatives
 - Acquisition strategy
 - Mission operations approach
 - Data processing and distribution approach
 - Access to space (launch vehicle selection; co manifest; etc.)
- Develop / document the mission science requirements (STM and Level 1 req's)
- Explore a full range of mission implementation options to:
 - Define mission concepts that meet the Level 1 requirements
 - Investigate instrument and mission design and development alternatives, including make/buy decisions and different mission operations approaches
 - Identify the optimum range of cost, schedule, and capability that will maximize the science/cost ratio across the entire Decadal Survey flight program
 - Identify needed technologies and maturation plans
 - Identify potential partnerships with non-NASA organizations
- Draft a mission concept report that shows the mission is ready to start Phase A

Mission Concept Review (MCR)									
	Entrance Criteria		Success Criteria						
1.	Mission goals and objectives.	1.	The need for the mission has been clearly identified.						
2.	Analysis of alternative concepts to show at least one is feasible.	2.	Mission objectives are clearly defined and stated and are unambiguous and internally consistent.						
3.	Concept of operations.	3.	The preliminary set of requirements satisfactorily provide						
4.	Preliminary mission descope options.	4. 5.	system that will meet the mission objectives.						
5.	Preliminary risk assessment, including technologies and associated risk		The concept evaluation criteria to be used in candidate systems evaluation have been identified and prioritized.						
	management/mitigation strategies and options.		The mission is feasible. A solution has been identified that i						
6.	Conceptual test and evaluation strategy.		technically feasible. A rough cost estimate is within an acceptable cost range.						
7.	Preliminary technical plans to achieve next phase.	6.							
8.	Defined Measures of Effectiveness (MOEs) and	0.	An updated technical search was done to identify existing						
	Measures of Performance(MOPs).	1.	assets or products that could satisfy the mission or parts						
9.	Conceptual life-cycle support strategies (logistics,		the mission.						
	manufacturing, and operation).	8.	Technical planning is sufficient to proceed to the next phase						
		9.	Risk and mitigation strategies have been identified and are acceptable based on technical risk assessments.						

* NPR 7120.005D page 19 points to NPR 7123.1A – Appendix G3

Strawman GEO-CAPE Study Schedule



642														
ID	Year			2	011			20	12		2013		3	Notos
שו	Task FY Quarter	Q1	Q2	Q	3 Q4	1Q1	Q2	Q3	Q4 (21 Q	2Q	03 C	4Q1	Notes
1	GEO-CAPE Community Workshop													
	Science Requirements													
3	Science partnership discussions								3					Partnership agreements with NOAA, EPA, international organizations / agencies
4	Baseline science requirements				4									Scientific requirements that must be achieved to fully satisfy baseline science objective
5	Simultaneous observations req.													Degree that ocean and atmosphere observations must be simultaneous / overlap
6	Observing scenario													Definition of observation pattern / pointing scenario over the science field of regard
7	Science descope options													Priority of science requirements; partial requirements fulfillment acceptability
8	Threshold science requirements													Minimum requirements which scientifically justifies performing the mission
9	STMs / L1 science req's published					\$								Draft Level 1 science requirements, measures of effectiveness (MOEs, KPPs)
10	HPL Implementation Assessment													
11	Government HPL													Assessment of GOES, TDRSS, DoD hosting opportunities
12	Commercial HPL													Updated data on commercial hosting opportunities and costs
13	HPL assessment report					2								Hosting accommodations and opportunities (LRDs, payload mass, size, geometry, etc.
14	Instrument Design Studies													
15	Instrument line-of-sight pointing stuc	ły												Instrument line-of-sight pointing capability trade-offs, design concepts, costs
16	GeoMAC instrument study													GeoMAC instrument characteristics, capabilities, cost; cloud detection?
17	PanFTS instrument study													PanFTS instrument characteristics, capabilities, cost
18	CEDI instrument refinement study													CEDI design refinement (atmospheric correction, size minimization, etc.)
19	Planning payload instrument study r	rep	ort											Summary descriptions of instrument concepts (characteristics, capabilities, costs)
20	TRL Assessment													
21	ESTO TRL assessment					-								Technical readiness and risks assessment of GEO-CAPE instrument concepts
22	TRL assessment report						6	<u>,</u>						Technology readiness and maturation plan
	Mission Design Studies													
24	Acquisition strategy													Preliminary acquisition strategies for all major procurements
25	Baseline mission study													Mission capability that fulfills baseline science objectives (dedicated, distributed)
26	Mission descope options													Reductions in mission capability / cost from baseline science down to threshold
27	Mission study report													Mission architecture and system concept(s), cost and schedule, risks
	Mission Concept Review													
29	Draft level 1 requirements document													Science objectives, instrument summaries, mission success criteria, etc.
30	Mission concept report													Mission architecture, system concept(s), acquisition approach, cost, schedule, risks
31	Preliminary integrated baseline													Project WBS, integrated milestone schedule, lifecycle cost, risk assessment, etc.
32	Preliminary formulation authorization	n d	ocu	me	ent (FAD))							Mission purpose, authority, goals & objectives, participants, funding, reviews
33	Mission concept review (MCR)													The MCR affirms the mission need and examines the proposed mission's
												8		objectives and the concept for meeting those objectives
34	Key Decision Point A (KDP-A)												$\mathbf{\mathbf{x}}$	NASA approval to begin formulation of the GEO-CAPE mission

NASA Mission Life-Cycle*

GEO-CAPE is here

* Source: NASA/SP-6105 Systems Engineering Handbook, page 20

System Require	ments Review (SSR)					
Entrance Criteria	Success Criteria					
 Successful completion of the MCR and responses made to all MCR Requests for Actions (RFAs) and Review Item Discrepancies (RIDs). 	 The project utilizes a sound process for the allocation and control of requirements throughout all levels, and a plan has been defined to complete the definition activity within schedule constraints. 					
 A preliminary SRR agenda, success criteria, and charge to the board have been agreed to by the technical team, project manager, and review chair prior to the SRR. 	2. Requirements definition is complete with respect to top-level mission and science requirements, and interfaces with external entities and between major internal elements have					
 The following technical products for hardware and software system elements are available to the cognizant participants prior to the review: a. system requirements document; b. system software functionality description; c. updated concept of operations; d. updated mission requirements, if applicable; e. baselined SE Mgmt. Plan; f. risk management plan; g. preliminary system requirements allocation to the next lower level system; h. updated cost estimate; i. Technology Development Maturity Assessment Plan; j. updated risk assessment and mitigations (including PRA as applicable). k. logistics documentation (e.g., preliminary maintenance plan); j. preliminary human rating plan, if applicable; 	 Requirements allocation and flow down of key driving requirements have been defined down to subsystems. Preliminary approaches have been determined for how requirements will be verified and validated down to the subsystem level. Major risks have been identified and technically assessed, and viable mitigation strategies have been defined. 					

* NPR 7120.005D page 19 points to NPR 7123.1A – Appendix G4