

Oceans Science Working Group

presented by Antonio Mannino NASA Goddard Space Flight Center

Outline

- Background
- Science Traceability Matrix
- Current & Future Plans
- Instrument Design Study
- IOCCG Report on Geo Ocean Color

NASA GEO-CAPE Worskop Meeting May 11-13, 2011

Advantages of Coastal Observations from Geo

- Observations analogous to "weather" for coastal waters
 - water quality, primary production, harmful blooms, etc.
- Discriminate physical from biological forcing
 - Rates of processes possible (diurnal changes) Primary productivity, photooxidation, transport of materials, etc.
- Resolve sub-mesoscale processes (lateral scales <1km)
- Study short time scales associated with dynamic coastal processes (tides, wind-driven currents, storm surges, algal blooms)
- More opportunities for cloud-free viewing
- High signal-to-noise at finer spatial resolution (~300m) can be achieved by longer integration time
- Opportunity to monitor hazardous events on high frequency time scales (oil slicks, HABs, etc.)

GEO-CAPE Coastal Applications & Societal Benefits

- Detection and tracking of hazards: oil spills, harmful algal blooms, sewage overflows, other pollutants
- Assessment of climate variability and change
- Prediction of fisheries yields through improvement of models and model forecasting.
- Post-storm Assessments (e.g., flood detection)
- Water Quality / Ecosystem Health
- Water clarity forecasting (Navy ops; recreation)
- Link data to models and decision-support tools and processes e.g., to predict occurrence and extent of hypoxic regions ("dead zones").
- Sediment transport (navigation)

GEO-CAPE Oceans Science Working Group (SWG)

NASA HQ Mission Leads: Paula Bontempi & Jassim Al-Saadi (Carlos Del Castillo) **Coordinator:** Laura Iraci (NASA ARC)

Science Working Group:

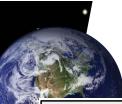
Bob Arnone Barney Balch Francisco Chavez Chuanmin Hu Paula Coble Curt Davis Carlos del Castillo Paul DiGiacomo Joachim Goes Jay Herman Zhongping Lee Carolyn Jordan Steve Lohrenz Antonio Mannino (co-lead) Charles McClain Ru Morrison Colleen Mouw Frank Muller-Karger

Joe Salisbury (co-lead) Blake Schaeffer Heidi Sosik Ajit Subramaniam Rick Stumpf Omar Torres Maria Tzortziou Menghua Wang

Ocean Cal/Val Office Participants: Joachin Chaves, Stan Hooker, Amy Neeley & Jeremy Werdell

Objectives

Develop mission Science Traceability Matrix (STM) for Coastal Oceans


- Define ocean science questions for GEO-CAPE mission
- Establish measurement & instrument requirements
- Advise HQ on required scientific & engineering studies Prepare documentation to advance mission to Phase-A

Summary of Accomplishments

- Developed Science Traceability Matrix (STM)
- Supported Instrument Design Lab study
- Supported Mission Design Lab study
- Atmospheric correction studies
- Additional science studies underway to inform on requirements
- Joint ACE/Geo-CAPE Field Ocean product assessments
- Completed draft white paper
 - Describes and justifies STM
 - Future plans (algorithms, cal/val, etc.)

STM under review through summer 2011

Geo-CAPE Coastal Ocean Ecosystem STM

Science Focus	Science Questions	Approach Science Question	Measurement Requirements	Instrument Requirements	Platform Requirem.	Ancillary Data Requirem.
Short-Term Processes	 How do short-term coastal and open ocean processes interact with and influence larger scale physical, biogeochemical and ecosystem dynamics? (OBB1) How are variations in exchanges across the land- ocean interface related to observe within the 	PRODUCTS Standing Stocks: Aquatic chlorophyll a, POC, DOC, PIC, DIC*, inherent & apparent optical properties, total suspended matter, phytoplankton biomass*, pigments* and key functional groups, terrigenous DOC*, & black carbon*. <u>Rate Measurements:</u> Aquatic primary productivity, respiration*, air-sea CO2 fluxes*, photooxidation, phytoplankton fluorescence responses*, phytoplankton vertical migration*, net community production of DOC* and POC*, and other associated trophic responses* <u>Hazards</u> : Aquatic HABs, petroleum-derived hydrocarbons, and other pollutants*.	Water-leaving radiances in the near-UV, visible & NIR for separating absorbing & scattering constituents & chlorophyll fluorescence Product uncertainty TBD Temporal Resolution: <i>Targeted Events:</i> • Threshold: 1 hour • Goal: 0.5 hour <i>Routine Coastal U.S.:</i>	Hyperspectral UV-VIS-NIR • Threshold: 345-900 nm; 3 SWIR bands 1245, 1640, 2135 nm • Goal: 340-1100 nm; 3 SWIR bands 1245, 1640, 2135 nm • Spectral Resolution: • Threshold: UV-VIS: 0.5 nm FWHM; NIR: 1 nm; SWIR: 20-50 nm • Goal: UV-VIS: 0.25 nm FWHM; NIR: 0.5 nm; SWIR: 20-50 nm • Retrieval of NO ₂ and O ₂ A-band	Geostationary orbit to permit sub-hourly observations of coastal waters adjacent to the continental U.S., Central and South America Storage and download of full spatial data and spectral data.	Western hemisphere data sets from models, missions, or field observations: Measurement Requirements (1) Ozone (2) Total water vapor (3) Surface wind velocity (4) Surface barometric barometric
Ocean Exchange	changes within the watershed, and how do such exchanges influence coastal and open ocean biogeochemistry and ecosystem dynamics? ‡ (OBB1 & 2)	 *Products not currently derived from ocean color observations. Targeted, high-frequency, episodic event- based monitoring and evaluation of tidal and diurnal variability of Standing Stocks, Rate Measurements and Hazards from river mouths to the coastal ocean (and lakes). 	Threshold: ≤3 hours Goal: 0.5 hour Regions of Special Interest (RSI): Threshold: 1 RSI 3 scans/day Goal: multiple RSI 3 scans/day Other Coastal N. & S.	for atm. corrections? (TBD) Signal-to-Noise Ratio (SNR): • Threshold: 1000:1 for 10 nm FWHM 600:1 for 40 nm FWHM in NIR; 300:1 to SWIR bands (20-50nm FWHM) • Goal: 1500:1 for 10 nm (380-800 nm) nm FWHM in NIR; 300:1 to 200:1 for S	o 100:1 for	pressure (5) NO2 concentration (6) Vicarious calibration & validation - coastal (7) Full prelaunch characterization Science
Impacts of Climate Change & Human Activity	3 How do natural and anthropogenic changes including climate-related forcing impact coastal ecosystem biodiversity and productivity? ‡ (OBB1, 2 & 3)	Routine sampling of seasonal and interannual variations in the Standing Stocks, Rate Measurements and Hazards for estuarine and continental shelf regions with linkages to open-ocean processes at appropriate spatial scales. Observe coastal region at sufficient spatial	America 50°N to 45°S: • Threshold: 4 times/yr • Goal: ≤3 hours Spatial Resol. (nadir): • Threshold: 375 x 375 m • Goal: 250 x 250 m	 (20-50nm FWHM); 400:1 NO₂ band (TE see Measurement Requirements for Te Spatial Resolutions and Field of View. Field of Regard: ±9° N to S & E to W imaging capabilit for Lunar & Solar Cals. 	3D) mporal &	Requirements (1) SST (2) SSH (3) PAR (4) UV (5) MLD (6) CO2 (7) pH (8) Ocean circulation
SYNERGY Impacts of Airborne- Derived	4 How do airborne- derived fluxes from precipitation, fog and episodic events such as fires, dust storms & volcanoes significantly affect the ecology and	Observe coastal region at sufficient spatial scales to resolve near-shore processes, coastal fronts, eddies, and track carbon pools and pollutants. Integrate GEO-CAPE observations with field measurements, models and other satellite data: 1. To derive coastal carbon budgets and	Field of Regard for Ocean Color Retrievals ¹ : 50°N to 45°S; ~145°W to 45°W Coastal Coverage: width from coast to ocean: • Threshold: 375 km	Jitter • Threshold: <25% pixel size during sin • Goal: TBD Non-saturating detector array(s) at L On-board Calibration: • Monthly Lunar Calibration at ≤7° phas • Solar Calibration (TBD)	max	(9) Tidal & other coastal currents (10) Aerosol & dust deposition (11) run-off loading in coastal zone (12) Wet deposition in coastal zone
Fluxes	biogeochemistry of coastal and open ocean ecosystems? (OBB1 & 2) How do episodic hazards, contaminant	determine whether coastal ecosystems are sources or sinks of carbon to the atmosphere 2. To quantify the responses of coastal ecosystems and biogeochemical cycles to river discharge, land use change, airborne- derived fluxes, hazards and climate change. 1 2 3 4 5	 Goal: 500 km RSI: Amazon & Orinoco River plumes, Peruvian upwelling, Cariaco Basin, Bay of Fundy, Rio Plata, etc. (TBD) 	Polarization: <0.5% Relative Radiometric Precision: • Threshold: 1% through mission lifetime • Goal: 0.5% through mission lifetime Mission lifetime: Threshold: 3 years; 0		Validation Requirements Conduct high frequency field measurements and modeling to validate GEO- CAPE retrievals from river mouths to
Events & Hazards	loadings, and alterations of habitats impact the biology and ecology of the coastal zone? (OBB4)	3. To estimate fishery yields, extent of oxygen minimum zones, and ecosystem health (including ocean acidification). 3 5 Pre-launch characterization		 ile: Near Real-Time satellite data download from other on-board autonomous decision making: (TBD) tly cloudy scenes; Targeting events (e.g., HABs) ion: to achieve radiometric precision above on orbit itivity¹: Threshold: <70°; Goal: <75° 		beyond the edge of the continental margin.

‡ Climate change-related science questions

GEO-CAPE Science Questions are traceable to NASA's OBB Advanced Planning Document

* Coverage area within field-of-view (FOV) includes major estuaries and rivers such as Chesapeake Bay & Lake Pontchartrain/Mississippi River delta, e.g., the Chesapeake Bay coverage region would span west to east from Washington D.C. to several hundred kilometers offshore (total width of 375 km threshold).

Draft v.2.7 – March 24, 2010

Geo-CAPE Ocean Science Questions

Draft v.2.7 - March 24, 2010

Short-Term Processes

Land-Ocean Exchange

Impacts of Climate Change & Human Activity

Impacts of Airborne-Derived Fluxes

Episodic Events & Hazards

- 1. How do short-term coastal and open ocean processes interact with and influence larger scale physical, biogeochemical and ecosystem dynamics?
- 2. How are variations in exchanges across the land-ocean interface related to changes within the watershed, and how do such exchanges influence coastal and open ocean biogeochemistry and ecosystem dynamics?
- 3. How do natural and anthropogenic changes including climate-related forcing impact coastal ecosystem biodiversity and productivity?
- 4. How do airborne-derived fluxes from precipitation, fog and episodic events such as fires, dust storms & volcanoes significantly affect the ecology and biogeochemistry of coastal and open ocean ecosystems?
- 5. How do episodic hazards, contaminant loadings, and alterations of habitats impact the biology and ecology of the coastal zone?

Ocean Data Products

Mission Critical Products (drive requirements; heritage algorithms)

- Spectral remote sensing reflectances (& water-leaving radiances)
- Chlorophyll-a, Primary Productivity
- Particulate Organic Carbon, Dissolved Organic Carbon, Particulate Inorganic Carbon (coccolithophore blooms)
- Total Suspended Matter
- Absorption coefficients of Colored Dissolved Organic Matter, Particles & Phytoplankton; Particle backscatter coefficient
- Water clarity (k_d[490nm]; euphotic depth)
- Photosynthetically Available Radiation
- Fluorescence Line Height, Phytoplankton Carbon
- Trichodesmium, Harmful Algal Bloom detection & magnitude
- Aerosol & other atmospheric products for atmospheric corrections

Highly Desirable Products (experimental products)

- Particle size distributions & composition, other plant pigments, Functional/ taxonomic group distributions, Phytoplankton physiological properties, Vertical migration detection
- Net Community Production, Export production, Respiration
- Air Sea CO₂ fluxes, *p*CO₂(aq)
- Terrigenous Dissolved Organic Carbon
- Petroleum detection and thickness, Photooxidation

Approach

- Survey mode for evaluation of diurnal, seasonal and interannual variability
 - U.S. coastal waters
 - Regions of special interest
 - All other coastal waters from 50°N to 45°S
- Targeted observations of high-frequency and episodic events including evaluation of tidal and diurnal variability
- Resolve near-shore processes, fronts, eddies, and track carbon pools and pollutants with high spatial resolution capabilities.
- Integrate GEO-CAPE observations with field measurements, models and other satellite data:
 - To derive coastal carbon budgets and determine whether coastal ecosystems are sources or sinks of carbon to the atmosphere.
 - To quantify the responses of coastal ecosystems and biogeochemical cycles to river discharge, land use change, airborne-derived fluxes, hazards and climate change.
 - To improve estimates of **fishery yields**, extent of **oxygen minimum zones**, and **ecosystem health** (including ocean acidification).

Measurement & Instrument Requirements

Threshold	Baseline (Goal)	
375 m x 375 m	250 m x 250 m	
1 hour	0.5 hour	
<3 hours	0.5 hour	
1 RSI at 3 scans/day	<3 hours	
50°N to 45°S; ~155°W to 35°W	same as threshold	
375 km	500 km	
345-900 nm; 1245, 1640, 2135 nm	340-1100 nm; 1245, 1640, 2135 nm	
UV-VIS: 0.5 nm FWHM; NIR: 1 nm; SWIR: 20-50 nm	UV-VIS: 0.25 nm FWHM; NIR: 0.5nm; SWIR: 20-50nm	
1000:1 for 10 nm FWHM (380-800 nm); 600:1 for 40 nm FWHM in NIR; 300:1 to 100:1 for SWIR bands (20-50nm FWHM)	1500:1 for 10 nm (380-800 nm); 600:1 for 40 nm FWHM in NIR; 300:1 to 200:1 for SWIR bands (20-50nm FWHM)	
<25% of pixel size	<10% of pixel size	
<1 pixel	TBD	
Monthly at 7° phase angle	same as threshold	
1% through mission lifetime	<0.5% mission lifetime	
	375 m x 375 m 1 hour 3 hours 1 RSI at 3 scans/day 50°N to 45°S; ~155°W to 35°W 375 km 345-900 nm; 1245, 1640, 2135 nm UV-VIS: 0.5 nm FWHM; NIR: 1 nm; SWIR: 20-50 nm 1000:1 for 10 nm FWHM (380-800 nm); 600:1 for 40 nm FWHM in NIR; 300:1 to 100:1 for SWIR bands (20-50nm FWHM) <25% of pixel size <1 pixel Monthly at 7° phase angle	

Geostationary view of Coastal Regions from 95W

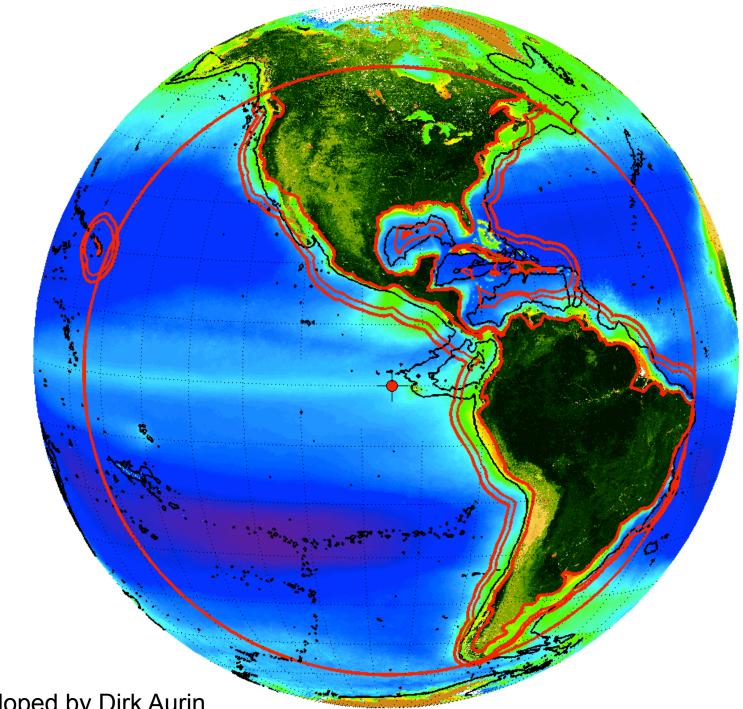


image developed by Dirk Aurin

Science Studies for Evaluation of Requirements

Spatial & Temporal measurement requirements

- GOCI, high latitude polar orbiters, and HICO data analysis
- Dissipation/dispersion of phytoplankton, contaminants and sediments
- Exchange across land-sea interface
- Sensitivity studies on observing strategies
- Diurnal phytoplankton physiology from fluorescence dawn to dusk sensitivity
- Atmosphere-ocean synergistic science
- Vertical migration of phytoplankton
- Process observations for algorithm development
- Atmospheric correction studies for ocean color

Algorithm Assessment & Development Plan

- Develop advanced algorithms to take advantage of full spectral range & high spectral resolution
 - Initial approach to emulate SeaWiFS, MODIS and MERIS algorithms
 - Joint activity with PACE and ACE missions
 - Apply near real-time atmospheric correction
 - Coincident NO₂, O₃, aerosols, etc.
- Joint ACE/Geo-CAPE Ocean product assessments
 - Field ocean product uncertainty documentation
 - Planned satellite ocean product uncertainty assessment
- Further development work identified
 - Planning field activities with specific observational objectives
 - in situ sensor development (spectral range and resolution)

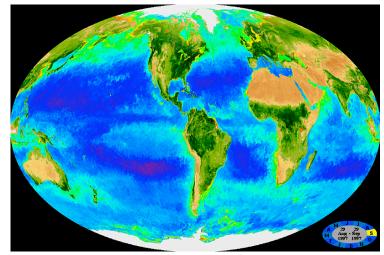
Cal/Val Plans & Requirements

Calibration: Radiometric, Spectral, and Spatial

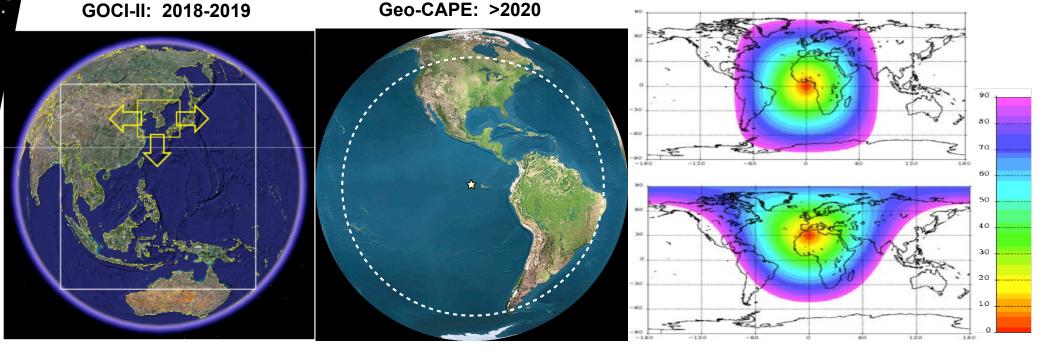
- Follow approaches for SeaWiFS and MODIS
- Extensive pre-launch calibration and characterization
- Hyperspectral spectrometer enables the use of solar Fraunhofer spectrum for on-orbit spectral calibration
- Post-launch (in-orbit) vicarious calibration
 - Requires continuous field vicarious calibration site
- Post-launch stability monitoring (lunar, solar and stable target)

Validation

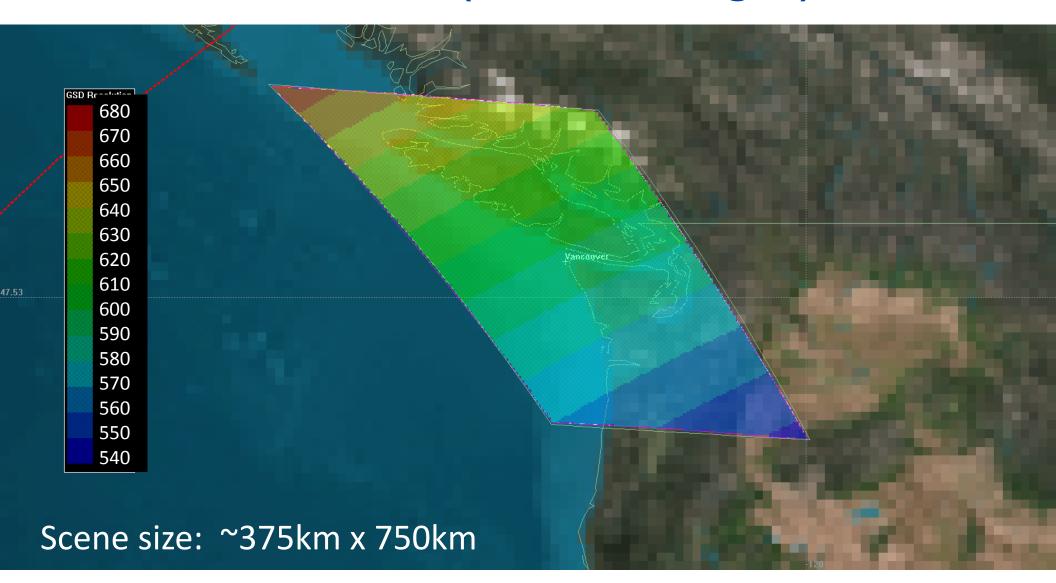
- Directed field campaigns
 - Optical closure experiments
 - Diurnal variability
- Existing observation networks
- Opportunistic validation (research cruises, buoys, moorings)


Field campaign in Chesapeake Bay July 2011 to coincide with Discover AQ

Complementary Science Missions



- Global ocean color missions:
 - PACE (2019), ACE (>2020)
 - Joint Cal/Val activities
 - JAXA S-GLI; ESA OLCI
- Geo constellation:
 - Korean GOCI-2
 - ESA's OCAPI
 - ISRO's HR-Geo


PACE

Geo-OCAPI: ?

GSD Resolution : IFOV = 375m (nadir) Vancouver (25km² averages)

courtesy of Jay Smith

GEO-CAPE scans of South American Coastal Waters during early morning

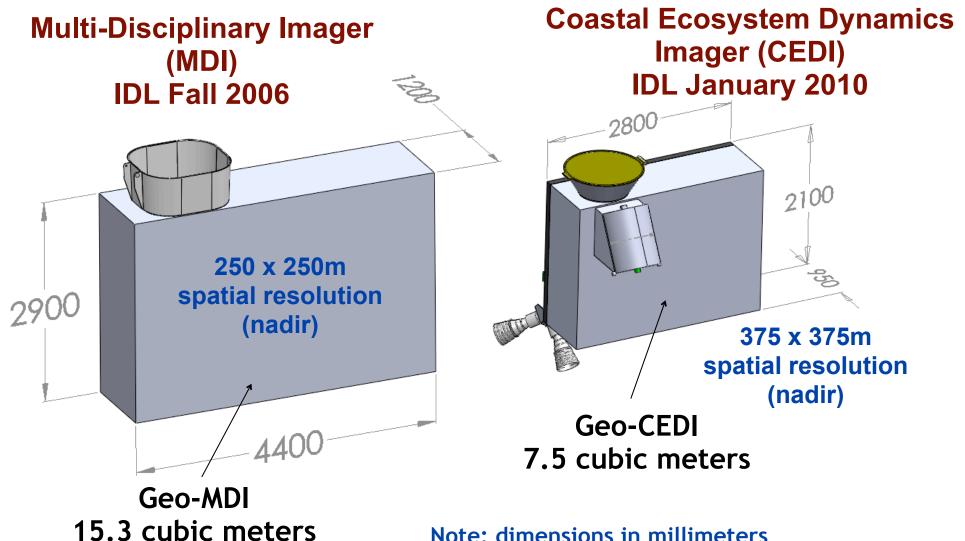
Air Mass Fraction @ UTC: 21-Sep-2011 11:00:00 Air Mass Fraction @ UTC: 21-Sep-2011 12:00:00 11 10 60 60 9 45[°] N 45[°] N 8 30[°] N 30[°] N 7 15[°] N 15[°] N 6 0 O` 5 120° W 90° W 120° W 90° W 60° W 150 W 60 150°W 15[°] S 15[°] S 4 30[°] S 30[°] S 3 45[°] S 45[°] S 2 60[°] S 60° S 1 NASA/GSFC/614.2, by D. Aurin & A. Mannino NASA/GSFC/614.2, by D. Aurin & A. Mannino 10 Sierra Time (UTC -6): 21-Sep-2011 05:00:00 Sierra Time (UTC -6): 21-Sep-2011 06:00:00

~16 hours of scan time available each day

see poster by Dirk Aurin

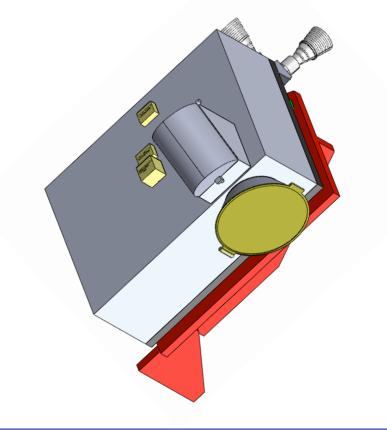
GEO-CAPE Coastal Ecosystems Dynamics Imager (CEDI) Instrument Design Lab Study January 25-29, 2010

> GSFC IDL Team, Scott Janz, Jay Smith, Antonio Mannino


Other Participants: Janet Campbell, Jay Al-Saadi, Richard Key, Fred Lipshultz, Kate Hartman & Doreen Neil with contributions from: Chuanmin Hu, Chuck McClain & Zhongping Lee

NASA GEO-CAPE Worskop Meeting May 11-13, 2011

Instrument Design Lab Study Goals



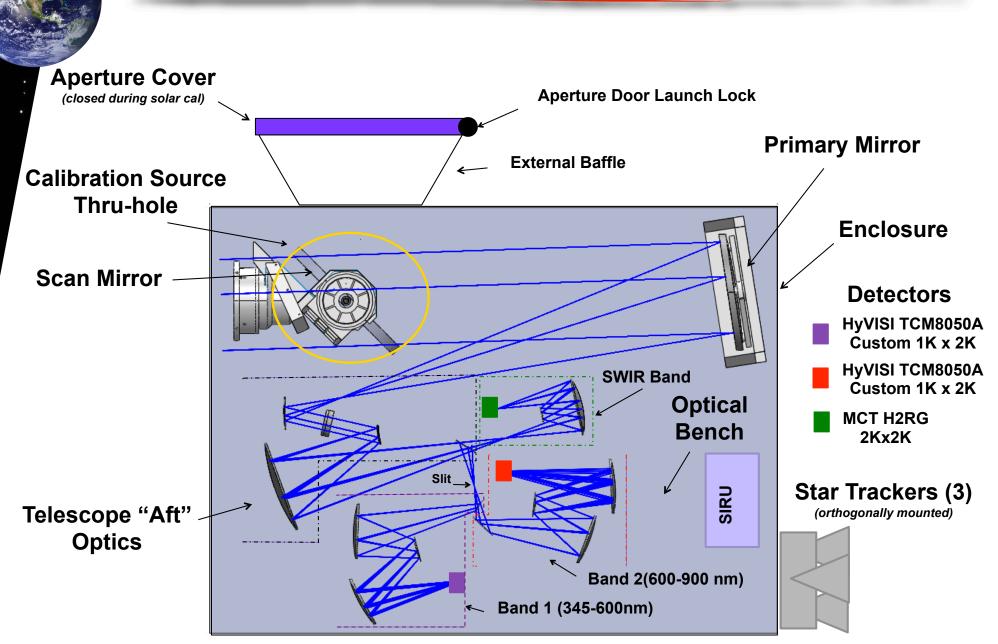
(1) to develop an instrument design that meets requirements established in the Coastal Ocean Ecosystems STM (2) to reduce size and cost from a previous IDL design concept

Note: dimensions in millimeters

Summary of Geo-CEDI

Instrument Characteristics

- Volume 7.5 m³
- Mass 621.4 kg
- Power 392 W
- Data Rate 88.4 Mbps
- Scene: 750 km N-S x variable E-W
- Scene Integration Time: 9-17 min
- Pointing ~0.5 arc-sec
- Lifetime 3 yr (design); 5 yr (goal)


Instrument Concept

- Enables scientific objectives of coastal ocean and atmospheric retrievals.
 - Capable of pointing anywhere on Full Disk.
 - Spatial Resolution: 375 m x 375 m (nadir)
 - Telescope focal length set for 1:1 Offner Spectrograph
 - Effective focal length = 1717.7 mm, F/3.44 focal ratio
- Employs three focal planes
 - (1) 345-600 nm, (2) 600-1100 nm
 - Two Teledyne custom HyViSi ROIC: 1k (spectral) x 2k (spatial) detectors (UV-A or NIR coating)
 - (3) 1225-2160 nm
 - One HgCdTe Hawaii-2RG ROIC: 2k x 2k detector (SWIR)
- All detectors have 18 µm pixels
- Spectral Resol: 0.5 nm (UV-NIR) and 2.5 nm (SWIR)

Technology Development Needs

- Scan mirror pointing mechanism requires further study and technology enhancements.
- Dedicated effort required to investigate, characterize, and mitigate all sources of disturbances to scan mirror.
- 100Hz Attitude Determination may exceed existing proven technologies (133MHz BAE Rad750).

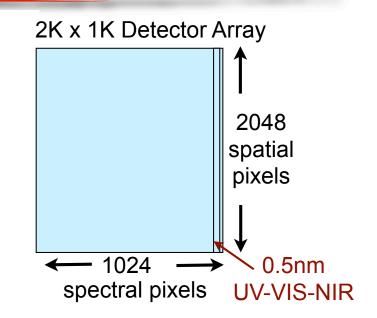
CEDI Conceptual Scanning Plan

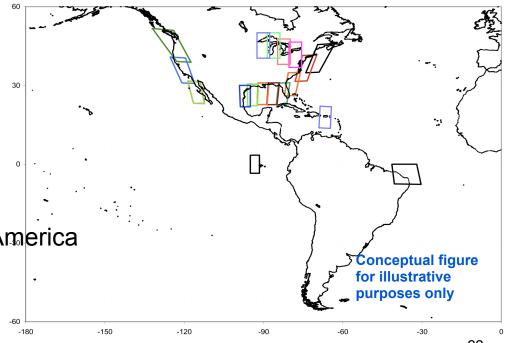
>72 scenes per day (~750km x 375km nadir)

- ~16 hours of operation per day
- ~4 scenes per hour (13.5 minutes each)
- ~1000 iFOV scans per scene

Avoid scanning cloudy scenes

Targeted Events - scheduled as necessary


•Survey Mode


U.S. Coastal Waters

- East Coast 4 scenes (3-4x/day)
- Gulf Coast 4 scenes (3-4x/day)
- West Coast 3 scenes (3-4x/day)
- Puerto Rico 1 scene (3-4x/day)
- Great Lakes 4 scenes (3x/day)

Regions of Interest

- Other coastal waters of North & South America
- Anywhere within Field of Regard (50°N to 45°S; ~145°W to ~45°W)

Radiometry Requirements & Results 70° Solar Zenith Angle case

λ_{0-} BandsFWHMW/m²- $\Delta\lambda_{um}$ -sterReq'dWell_CapacityAveragesLtypLmaxeffReq'dnm $\Delta\lambda^-$ nmLtypLmaxbynamic Range $\Delta\lambda$ Well_VolumeWell_VolumeOpt. TxDet. QESNRref3501539.26117.52.9921.4960.0046.538139.2470.240.655003601538.00124.13.2716.7160.0059.840195.3930.310.655003851032.16125.73.9117.6540.0056.656221.5130.310.6810004121041.77198.74.768.6540.00115.662550.0950.430.7210004251040.63193.14.758.7040.00104.106608.1510.390.7410004431037.51219.15.849.6140.0094.319679.9620.380.7510004601033.14238.97.2110.6040.0091.250718.6210.390.7510004751030.25238.37.8810.9640.0091.250718.6210.390.7510004901029.25226.47.7410.4540.0095.675740.4720.410.751000	Ltyp SNR _{actual}
350 15 39.26 117.5 2.99 21.49 60.00 46,538 139,247 0.24 0.65 500 360 15 38.00 124.1 3.27 16.71 60.00 59,840 195,393 0.31 0.65 500 385 10 32.16 125.7 3.91 17.65 40.00 56,656 221,513 0.31 0.68 1000 412 10 41.77 198.7 4.76 8.65 40.00 115,662 550,095 0.43 0.72 1000 425 10 40.63 193.1 4.75 8.70 40.00 114,935 546,085 0.42 0.73 1000 443 10 37.51 219.1 5.84 9.61 40.00 104,106 608,151 0.39 0.74 1000 460 10 33.14 238.9 7.21 10.60 40.00 94,319 679,962 0.38 0.75 1000 47	
3601538.00124.13.2716.7160.0059,840195,3930.310.655003851032.16125.73.9117.6540.0056,656221,5130.310.6810004121041.77198.74.768.6540.00115,662550,0950.430.7210004251040.63193.14.758.7040.00114,935546,0850.420.7310004431037.51219.15.849.6140.00104,106608,1510.390.7410004601033.14238.97.2110.6040.0094,319679,9620.380.7510004751030.25238.37.8810.9640.0091,250718,6210.390.751000	
3851032.16125.73.9117.6540.0056,656221,5130.310.6810004121041.77198.74.768.6540.00115,662550,0950.430.7210004251040.63193.14.758.7040.00114,935546,0850.420.7310004431037.51219.15.849.6140.00104,106608,1510.390.7410004601033.14238.97.2110.6040.0094,319679,9620.380.7510004751030.25238.37.8810.9640.0091,250718,6210.390.751000	1512
4121041.77198.74.768.6540.00115,662550,0950.430.7210004251040.63193.14.758.7040.00114,935546,0850.420.7310004431037.51219.15.849.6140.00104,106608,1510.390.7410004601033.14238.97.2110.6040.0094,319679,9620.380.7510004751030.25238.37.8810.9640.0091,250718,6210.390.751000	1750
4251040.63193.14.758.7040.00114,935546,0850.420.7310004431037.51219.15.849.6140.00104,106608,1510.390.7410004601033.14238.97.2110.6040.0094,319679,9620.380.7510004751030.25238.37.8810.9640.0091,250718,6210.390.751000	1385
4431037.51219.15.849.6140.00104,106608,1510.390.7410004601033.14238.97.2110.6040.0094,319679,9620.380.7510004751030.25238.37.8810.9640.0091,250718,6210.390.751000	2061
460 10 33.14 238.9 7.21 10.60 40.00 94,319 679,962 0.38 0.75 1000 475 10 30.25 238.3 7.88 10.96 40.00 91,250 718,621 0.39 0.75 1000	2054
475 10 30.25 238.3 7.88 10.96 40.00 91,250 718,621 0.39 0.75 1000	1947
	1844
490 10 29.25 226.4 7.74 10.45 40.00 95,675 740,472 0.41 0.75 1000	1811
	1859
510 10 24.23 218.8 9.03 13.08 40.00 76,441 690,354 0.38 0.75 1000	1641
532 10 20.09 214.8 10.69 15.96 40.00 62,645 669,884 0.36 0.75 1000	1467
555 10 16.11 212.2 13.17 18.57 40.00 53,862 709,431 0.37 0.75 1000	1345
583 10 14.56 205.9 14.14 22.22 40.00 45,007 636,418 0.33 0.74 1000	1210
617 10 11.25 192.1 17.07 22.34 40.00 44,758 764,026 0.33 0.9 1000	1206
640 10 9.39 186.1 19.82 25.53 40.00 39,177 776,529 0.33 0.91 1000	1114
655 10 8.33 176.6 21.20 26.51 40.00 37,718 799,554 0.35 0.91 1000	1088
665 10 7.83 176.9 22.59 25.58 40.00 39,087 882,988 0.38 0.91 1000	1112
678 10 7.37 171.3 23.24 26.66 40.00 37,510 871,697 0.38 0.91 1000	1085
710 15 5.36 161.4 30.10 35.39 60.00 28,256 850,622 0.38 0.9 1000	1114
748 10 4.89 147.5 30.17 36.82 40.00 27,156 819,179 0.38 0.9 600	887
765 40 3.62 141.9 39.18 51.32 160.00 19,486 763,516 0.36 0.9 600	1428
820 15 2.82 129.7 46.04 62.24 60.00 16,067 739,677 0.36 0.89 600	766
865 40 4.50 139.0 30.89 37.36 160.00 26,770 826,886 0.36 0.88 600	1758
1245 20 0.88 59.5 67.61 67.72 368.00 1,477 99,843 0.336 0.85 300	637
1640 40 0.29 17.6 60.69 156.00 736.00 641 38,903 0.336 0.85 250	514
2135 50 0.08 4.7 58.75 424.41 920.00 236 13,843 0.336 0.87 100	

Challenge to overcome ocean requirements of high sensitivity (SNR) without saturating the detectors.

Ltyp = ~TOA Radiances at 70° SZA*

Total integration time = ~17.1 min per scene 0.8 sec integration time per scan line Co-add 2 frames for UV-VIS-NIR & 46 for SWIR

* TOA Radiances from Chuanmin Hu Spreadsheet for SNR calculations from Jay Smith (NASA GSFC)

Conclusions

- Geo-CAPE Oceans STM requirements are achievable with CEDI or similar class of instrument.
- Scan mirror pointing mechanism requires further study and technology enhancements.
 - e.g., Fast scanning mirror concept
 - Dedicated effort required to investigate, characterize, and mitigate all sources of disturbances to scan mirror.
- Additional design studies recommended
 - To reduce instrument size and cost
 - To extend design to meet goal requirements for temporal and spatial resolution, which fall within NASA's budget constraints
- Pointing Study underway (May-July 2011)

IOCCG working group on

"ocean colour observations from the geostationary orbit"

Status as of February 2011

David Antoine

Printing of Report planned for Summer-Fall 2011

16th IOCCG committee meeting, Plymouth, UK, 15-17 February 2011

IOCCG working group "Ocean colour from the geostationary orbit"

Working group membership

Yu-Hwan AHN David ANTOINE (Chair) Jean-Lou BEZY Prakash CHAUHAN Curt DAVIS Paul DIGIACOMO Xianqiang HE Joji ISHIZAKA Hiroshi KOBAYASHI Anne LIFERMANN Antonio MANNINO Constant MAZERAN Kevin RUDDICK

KORDI CNRS-LOV ESA ISRO Oregon State Univ. NOAA CSA Nagasaki Univ. Univ. Yamanashi CNES NASA ACRI-ST MUMM

Korea yhahn@kordi.re.kr antoine@obs-vlfr.fr France Jean-Loup.Bezy@esa.int France India prakash@sac.isro.gov.in USA cdavis@coas.oregonstate.edu USA Paul.DiGiacomo@noaa.gov China hexiangiang@sina.com.cn ishizaka@nagasaki-u.ac.jp Japan kobachu@yamanashi.ac.jp Japan anne.lifermann@cnes.fr France antonio.mannino@nasa.gov USA France cma@acri-st.fr Belgium k.ruddick@mumm.ac.be

IOCCG working group "Ocean colour from the geostationary orbit"

General summary and recommendations

✓ A number of scientific domains and more practical applications have been identified that would benefit fro GEO ocean colour observations

✓ Feasibility is now demonstrated (GOCI), so the question is when other missions will be launched within the 2015–2020 time frame

 \checkmark Many options exist to practically implement GEO ocean colour missions (out of scope to review technological solutions)

 \checkmark Missions can be either focused on a limited spot or they can look at the entire Earth disk

 \checkmark Spatial resolution should be in the 100-500m range (typical requirements have been also provided for most of the important characteristics of a GEO ocean colour sensor)

✓ Geostationary or slightly inclined geosynchronous orbits are two options

IOCCG working group "Ocean colour from the geostationary orbit"

General summary and recommendations, cont'd

 \checkmark Spectral requirements have been reminded (not "GEO-specific"). Importance of SWIR bands

✓ General radiometric requirements have been already defined elsewhere

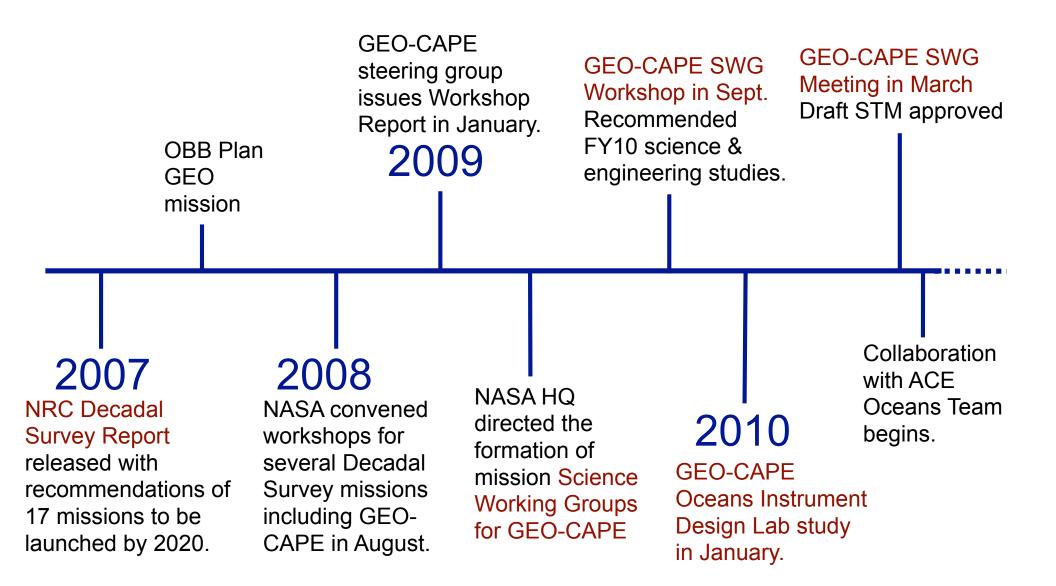
✓ Multi-purpose missions are maybe inescapable because of the cost of GEO launching

✓ Purely science-driven or more applied? Combination of both is likely necessary

✓ Efforts are needed in (1) understanding of optically-complex waters, (2) documentation and understanding of diurnal changes in optical properties, (3) improvements of atmospheric corrections for large air masses, (4) using spatial/ temporal coherency of observations

 ✓ Ensure maximum compatibility across missions (instrument characteristics and development, processing algorithms, common standards, longitude selection...)

 \checkmark A coordinated network of GEO ocean colour sensors is a tangible goal at the 2020-2025 horizon


Typical requirements

Parameter	Goal	Breakthrough	Threshold	Comments
Orbit	Geosynchronous (inclination depending on mission goals)		Geostationary	
Type of Coverage	Complete Earth disk (oceans, coastal zones and lands)	Complete Earth disk (oceans & coastal zones)	Selected areas of interest	
Revisit	30 min	1 hour	1h in average	
Accessibility to specific revisit areas	15 min		none	
Resolution (Nadir GSD)	100 m	250 m	500 m	Aggregation might be acceptable for some bands
Imager bands	20 (See Table 3.1)	16	10	
Temporal co- registration for 1 scene	< 1 minute			Duration for acquisition of a given point in all bands
Out of band integrated signal	< 1%			
SNR	See Table 3.1			
Solar calibration	On-board devices			
Temporal stability	0.1% over the mission (moon observations)			
Vicarious calibration	Based on fixed-sites			This is a mandatory element for the success of any ocean colour mission

Parameter	Goal	Breakthrough	Threshold	Comments
Pre-launch absolute Radiometric accuracy	2 % in radiance, w.r.t. a laboratory standard	N/A	4 %	
Relative accuracy between bands	1%			
Polarisation sensitivity	1%			
Modulation Transfer Function (MTF)	0.3	0.2	0.15	
Clouds	Clouds to be observed	Degraded SNR for clouds	No data required	
<mark>Jitter</mark>	<mark><10%</mark>	<mark>10%</mark>	<mark><25%</mark>	This has to be discussed
Geolocation	¹ / ₄ pixel	¹ / ₂ pixel	1 pixel	
Latency	NRT	1 hour	1 day	Time between data acquisition and Level 1b availability
Lifetime	10 years	7 years	5 years	

EXTRA SLIDES

Timeline of GEO-CAPE Activities

Decadal Survey Summary

GEO-CAPE Coastal Waters Science Objectives from NRC Decadal Survey:

- To quantify the response of marine ecosystems to short-term physical events, such as passage of storms and tidal mixing.
- To assess the importance of high temporal variability in coastalecosystem models.
 - Both short-term and long-term forecasts of the coastal ocean require better understanding of critical processes and sustained observing systems.
- To monitor biotic and abiotic material in transient surface features, such as river plumes and tidal fronts.
- To detect, track and predict the location of sources of hazardous materials, such as oil spills, waste disposal, and harmful algal blooms.
- To detect floods from various sources, including river overflows.

Societal benefits from GEO-CAPE oceans mission

- Prediction of fisheries yield through improvement of models and model forecasting.
- Detection and tracking of hazards that relate to human health.
- Link data to models and decision-support tools and processes.
 e.g., to predict the occurrence and extent of hypoxic regions ("dead zones")