GeoTRACE Science Advisory Team: Jack Fishman, John Burrows, Jeremy Hales, Paul Crutzen, Guy Brasseur

GeoTRACE Industry Partners: Ball Aerospace, CSC, The Weather Channel, Hughes, PanAmSat, Space Systems Loral, Lockheed Martin

GeoTRACE Formulation:

Alan Little, Doreen Neil, Joan Howard, Eric Ramberg, Pamela Rinsland, Tom Shykula, Elvin Ahl, Bonnie Allen, Robert Averill, L. B. Bush, William Brune, M. D. Canright, Robert Estes, Jack Fishman, James Gleason, Larry Gordley, Dana Gould, A. G. Hagemann, Gary Halama, Robert Hess, Sean Kenny, James Leitch, Jonathan Miles, James Miller, Don Robinson, Marilee Roell, Glen Sachse, Dean Sparks, Jr,. Shelley Stover, Kevin Vipavetz, Gary Wilson

GeoTRACE is a proposed NASA mission to measure air pollution for the first time in the way that weather is observed:

every hour, from space, across the entire continent.

2005 Decadal Survey 2006 Community Workshop White Paper Consensus Report

GeoTRACE Approach

 Employ the same robust trace gas measurement techniques presently used in low Earth orbit to deliver unprecedented time-of-day resolved chemical weather.

 Simultaneous measurements of O3, aerosols, CO, NO2, SO2, and HCHO for documenting and interpreting the profound variability of tropospheric chemistry.

 GeoTRACE's time-of-day distribution of principal constituents remains the missing piece of the integrated observing strategy for tropospheric chemistry, highlighted by the international Integrated Global Atmospheric Chemistry Observations Theme Report on Atmospheric Chemistry as <u>#1 objective</u> for the decade (2004).

• The model of international sharing of geostationary weather data provides the framework for global coverage of chemical weather.

Remote sensing from geostationary orbit: GEO TROPSAT, a new concept for atmospheric remote sensing. Alan D. Little, Doreen O. Neil, Glen W. Sachse, Jack Fishman, and Arlin J. Krueger, Proc. SPIE 3221, 480 (**1997**), DOI:10.1117/12.298116

NASA CDTM - 10012 Pre-Phase A Study Report for the Geostationary Tropospheric Pollution Satellite (GEO TROPSAT) Mission. A. D. Little, D. O. Neil, Editors

GeoTRACE (1999) proposed to NMP-EO1, rated "outstanding" in all evaluation criteria.

Geostationary Observatory for Tropospheric Air Chemistry (GeoTRACE) Washington D.C

Commitment letters to the project from Hughes, Pan Am Sat, Space Systems Loral, and Lockheed Martin to fly GeoTRACE on commercial communications satellites.

Commitment letter from Hughes to fly GeoTRACE on (government-owned) TDRS-J (\$39-43M)

Note: TDRS-J Soars into Night Sky December 4, 2002

Neil Jan 2005

Notes: Each commercial vendor has a similar diagram highlighting their brand. Key points for NASA are that the regulated slots in GEO are limited, of high value to industry. Over active markets, satellites are replaced more frequently than their design life to add new capability, providing additional opportunities for access to space.

GeoTRACE has science goals similar to the atmospheric portion of GEO-CAPE

Table 2.1-1 Mission requirements for tropospheric chemistry measurement concept

Mission Requirement	Derived requirement	Basis
Tropospheric chemistry	O_3 , NO ₂ , CO	Ozone chemistry is fundamental among tropospheric chemical cycles
Ground sample distance	< 10 km at nadir	Distributions are highly variable; enables new algorithm techniques
Measurement frequency	>1 sample per hour	Time scale of atmospheric dynamics and many processes
Full Earth disk	17.4 degree FOV from GEO	Regional to near-global tropospheric chemistry context
Simultaneous time re- solved measurements over large area	GEO observing strategy	Identification of chemical sources, transport, and sinks

Table 2.1-2. Primary tropospheric chemistry suite measurement requirements

Observation	Band	Accuracy	Minimum SNR	Sensitivity Range
0 ₃	O ₃ Huggins band [total column]	5%	1000	4E11 to 1.3E13*
O ₃	O ₃ Chappuis band [boundary layer]	20%	1000	1.4E12 to 1.1E14*
NO ₂	NO ₂ 434-454 nm [column]	10%	2500	1.4E12 to 9.6E13*
Ring	Fraunhofer lines [cloud height]	50 mb	1000	5.6E11 to 5.6E13*
CO	2.3 µm band [column]	10%	2500	1.2E-3 to 3.3E-1 **
CO	4.6 μm band [column]	10%	700	6.0E-3 to 2.5E-1**
CH_4	2.3 µm band [reference gas for CO retrieval]	2%	2000	1.0E-3 to 3.3E-1**
N_2O	4.5 µm band [reference gas for CO retrieval]	2%	600	4.0E-3 to 1.4E-1**
Background Temperature	4.1 µm band [surface or cloud temperature]	0.5K	300	2.5E-3 to 2.0E-1**

Notes: 1. Sensitivity Range units are $*=[ph s^{-1} st^{-1} cm^{-2} nm^{-1}]$ and $**=[W m^{-2} sr^{-1}]$

2. Sensitivity Range based on 0 to 85 degree SZA using both models and observational data.

Use or disclosure of this information is subject to restrictions on cover page.

GEOSTATIONARY OBSERVATORY FOR TROPOSPHERIC AIR CHEMISTRY (GEOTRACE)

NMP GeoTRACE featured mature instrument concepts, operating scenario, access to space

Figure 3.1-4. (IR) Instrument Timeline provides the level of functional detail necessary to set operational concepts, and specify data rates and mission systems (ie, pointing).

(a) Allocation of Costs with dedicated spacecraft

Figure 3.3-1. Cost allocations (in M\$) show that hosting provides more new technology validation than dedicated spacecraft implementations.

GeoTRACE cost escalations and fidelity

Solicitation	Year	Cost (Millions)	Escalated Cost (Millions) for 2008 Start ²	Comments: See Note 1
ESSP-1	1996	\$90	\$116	First design study on instruments- basic Step-1 proposal of 12 pages
NMP-3	1999	\$120	\$148	Detailed industry partner work on instruments; Step-2 effort funded, full program development; Center management signoff; SAIC (independent) and RAO (GSFC) cost comparisons.
ESSP-3	2001	\$140	\$161	Step 1 effort. Escalated NMP-3 numbers; also brought in RAO (GSFC) estimates.

Note 1: None of the above include the "full cost" for a dedicated s/c and launch. Each mission allocated costs to accommodate non-recurring engineering changes, plus operating and bandwidth lease costs to the owner/operator.

Note 2: Escalation is from NASA New Start Inflation calculator at NASA Cost Estimation web site. http://cost.jsc.nasa.gov/bu2/inflation/nasa/inflateNASA.html

Science from GEO is highly affordable.

- The Decadal Survey estimated GEO-CAPE would cost \$550M.
- Forty two percent of this cost is spent on the launch (24%) and spacecraft (18%).
- Hosted payload spacecraft and launch costs could be reduced by an order of magnitude. (\$232 M to \$23 M or less).
- If similar savings were obtained for GEO-CAPE, the hosted payload solution saves nearly half of the total mission cost.

NMP GeoTRACE observing strategy "disk in the box" simplifies pointing requirements, shrinks instrument size, reduces risk

NMP GeoTRACE "disk in the box"

ESSP- 3 GeoTRACE "box on the disk"

<u>All</u> GeoTRACEs are hosted payloads.

NASA Precision Pointing State of Practice

NASA spacecraft precision pointing capability

Instrument	Footprint km	Spacecraft	Orbit, km	Footprint in µrad	pointing accuracy, µrad	pointing stability (jitter)
NAS <mark>A</mark> Hubble	(space)	Hubble	600		0.04	0.028 µrad/ 24 hours
GEOCAPE color	0.25 x 0.25		35786	7	1.75	0.07 μrad/ 80 sec
NASA Chandra	(space)	Chandra	Highly eccentric (10,000 – 140 000 km)		145	1.2 μrad/ 10 sec
GEOCAPE Chem	7.3 x 7.3		35786	205	38	50 μrad/ 2 sec
GOES-R	4 x 4 (sounder)	Commercial	35786	112	21	83 μrad/ 2 sec

Neil 2008

Earth Observation Pointing State of Practice

NASA atmospheric chemistry and ocean color pointing capabilities								
Instrument	Footprint km	Spacecraft (s/c)	Orbit, km	Footprint in µrad	pointing accuracy µrad	pointing knowledge µrad	pointing stability	
MOPITT (chem)	22 x 22	Terra	705	31196	727 s/c + instr 3 axis, 3 σ	436	1040 µrad/ 1 sec	
OMI (chem)	24 x 13	Aura	705	34029	4198 s/c + instr 3 axis, 3 σ	421	402 µrad/ 6 sec	
GLI (color)	1 x 1	ADEOS2	803	1245	2909 s/c + instr 2 axis, 3 σ	388	11 μrad / 1 sec	
CALIPSO	0.1 x 0.1	Proteus	705	142	1 396 s/c + instr 3 axis, 3 σ	1047	5.2 μrad / 4.7 msec	
GEOCAPE Chem	7.5 x 7.5		35786	205	37 1 σ		50 µrad / 2 sec	
GEOCAPE color	0.25 x 0.25		35786	7	2 1 σ		0.07 µrad / 80 sec	

Neil 2008

Government Payloads in orbit on Commercial Spacecraft

	<u> </u>		Estimated			-		
	Year	Payload	Integration	Arrangement				
Hosted Payload Examples	Flown	Туре	Complexity	Туре	Sponsor	Operator	Mfr	Spacecraft
						Intelsat &		
Marisat	1976	Comms	Dedicated		DoD	Comsat		Marisat-F2
Fleetsat	1970s	Comms	High	2 year + options	Navy	Comsat		
		Comms		2 yrs Gov't then	Canadian			
Ku- band demonstrator	1980s	demo	Moderate	commercial	Gov't	Telesat		Anik B
					2008			
				7-year lease then	Australian	Intelsat &		
LEASAT	1990	Comms	Dedicated	commercial (Defence	Hughes	Hughes?	LEASAT 5
WAAS	1996	Navigation	Mod-High	10-yr Lease	FAA	Inmarsat		POR
WAAS	1997	Navigation	Mod-High	10-vnleage	FAA	Inmarsat		AOR-W
X-ray Imager on solar array yoke	2000	Imager	Low			NOAA	SS/L	GOES 11/L
X-ray Imager on solar array yoke	2001	Imager	Low	Interagency	NASA/MSFC	NOAA	SS/L	GOES 12/M
		Comms	Low-	M	U.S. DTH &			
Ka-band demonstrator	2002	demo	Moderate	FFP Demo	Can. Gov't	Telesat	Lockheed	Nimiq-2
			610	P 4	Australian		SS/L, Mits-	
UHF Payload	2003	Comms	<01-		Defence	Singtel Optus	ubishi	Optus-C1
Cell Saver Demonstration	2004	Demo 🔨	Low			Loral Skynet	SS/L	Telstar-14
Thermal Coating Experiment	2004	Demo	Lew V			Loral Skynet	SS/L	Telstar-14
Radiation Dosimeter	2004	Sepsor	Cort			Loral Skynet	SS/L	Telstar-14
Onboard processor for Ka-band	2004	Demo	High	FFP Demo	CSA	Telesat	Boeing	Anik F2
Navigation, Communication &	~	Imager,)	-					
Meteorological imager on same	(F	Navigation,			Japanese	Japanese		
platform	2005	Cooms	High	Interagency	Gov't	Gov't	SS/L	MTSAT -1 / -1R
1	111						EADS	
WAAS/GCCS	2005	Navigation	Moderate	FFP + 10yr lease	FAA	Telesat	Astrium	Anik F1R
WAAS/GCCS	2005	Navigation	Moderate	FFP + 10yr lease	FAA	Intelsat	Orbital	Galaxy 15
	V			Civil-Military				
Military relay terminals 🔨 (())	2006	Comms	High	shared	South Korea	South Korea?		
				Funded demo S/C			Orb.Sci./	
(2)		Receiver		, & optional			Polyot	Orbcomm CDS-
AIS Demo	2008	demo	Moderate	operations	Coast Guard	Orbcomm	/ОНВ	3
~				Self-funded for			Orb.Sci./	
				commercial			Polvot	6 Orbcomm
AIS Operational	2008	Receiver	Moderate	service	Orbcomm	Orbcomm	/онв	spacecraft
CCD Camera	2008	Camera	Low	Self-funded	EchoStar	EchoStar		EchoStar 11
CCD Cameras	Various	Camera	Low	Various	Multiple	Multiple	Multiple	Multiple
	Sched:							
IRIS - Internet Router in Space	2H2009	Router	High	JCTD	Stratcom	Intelsat	SS/L	Intelsat 14
·	Sched:			3-yr Firm Fixed			Orbital	
CHIRP Payload	2H2009	Imager	Moderate	Price	USAF SMC	SES	Sciences	
UHF Payload	TBD	Comms		Out for bid	DoD	TBD		

GeoTRACE and Hosted Payload Proposal Experience

- Hosted payloads are less scary to NASA now than in 1996 when we first proposed.
- Hosted access to space is suitable for mission operating concepts which are systematic and low impact to the host. \implies Must define the planned concept of operations.
- Hosted payloads engage industry for appropriate cost effective services. \implies Lease of broadcast services is the business model.
- Hosted payloads implemented in a commercial manner would provide more resources for science and support continuity of data.