High image resolution NASA CALIOP extinction denoising / inference

Constructive insights for future space-based missions

Willem J. Marais, Robert E. Holz, Mark A. Vaughan, Charles R. Trepte, John W. Hair, Chris A. Hostetler

12/04/2023

Langley NASA CALIOP

1.0x10⁻¹ 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0x10⁻² 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0x10⁻³ 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0x10⁻⁴

Langley NASA CALIOP

1.0x10⁻¹ 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0x10⁻² 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0x10⁻³ 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0x10⁻⁴

Denoised total attenuated backscatter (Horizontal 1km, Vertical 60m) 8 2016-08-10 (nighttime) 6 Altitude (km) 2

38 39

- CALIOP noisy image: y
- Attenuated scattering ratio: *x*
- CALIOP forward model: F(x)
- CALIOP noise model: $\ell(y | F(x))$
- A priori assumption about attenuated scattering ratio: p(x)

- CALIOP noisy image: y
- Attenuated scattering ratio: *x*
- CALIOP forward model: F(x)
- CALIOP noise model: $\ell(y | F(x))$
- A priori assumption about attenuated scattering ratio: p(x)

The raw level-0 digitizer counts

- CALIOP noisy image: y
- Attenuated scattering ratio: x
- CALIOP forward model: F(x)
- CALIOP noise model: $\ell(y | F(x))$
- A priori assumption about attenuated scattering ratio: p(x)

- The raw level-0 digitizer counts
- -• Estimate parl. & perp. separately

- CALIOP noisy image: y
- Attenuated scattering ratio: *x*
- CALIOP forward model: F(x)
- CALIOP noise model: $\ell(y | F(x))$
- A priori assumption about attenuated scattering ratio: p(x)

- The raw level-0 digitizer counts
- Estimate parl. & perp. separately
- Model expected value of y

- CALIOP noisy image: y
- Attenuated scattering ratio: *x*
- CALIOP forward model: F(x)
- CALIOP noise model: $\ell(y | F(x))$
- A priori assumption about attenuated scattering ratio: p(x)

- The raw level-0 digitizer counts
- Estimate parl. & perp. separately
- Model expected value of y
- Model noise statistical properties

The noise model **Spatially-varying and signal-dependent noise variance**

CALIOP noise probability distribution

Starting with something familiar The formulation of optimal estimation

- CALIOP noisy image: y
- Attenuated scattering ratio: *x*
- CALIOP forward model: F(x)
- CALIOP noise model: $\ell(y | F(x))$
- A priori assumption about attenuated scattering ratio: $p(x)^{\bullet}$

- The raw level-0 digitizer counts
- Estimate parl. & perp. separately
- Model expected value of y
- Model noise statistical properties

 Promote structure / spatial + temporal correlation in image

Poisson total variation (PTV) PTV approximates the image as piecewise constant

cross-section

Willem J. Marais, et. al., "Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations" (2016)

Patch based denoising Exploit redundancy in image that allows for accurate approximation of a richer class of images

Marais, Willem, and Rebecca Willett. "Proximal-gradient methods for Poisson image reconstruction with bm3d-based regularization." In 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 1-5. IEEE, 2017.

1]
SL
 -
Ę
;
tte
sca
Š
þa
ed
uat
eni
att
Ð
La
рa

S

Denoised total attenuated backscatter (Horizontal 1km, Vertical 60m) 8 2016-08-10 (nighttime) 6 Altitude (km) 2

38 39

total attenuated backscatter [1/km 1/sr]

Profile A - 37.29°

Profile B - 40.37°

Cross-validation: Choosing the regularization parameter Step 1: Holdout pixels

CALIOP noisy image

holdout pixels

holdout pixels

Cross-validation: Choosing the regularization parameter Step 2: Denoise and interpolate over holdout pixels 2) Choose estimate with 1) For regularization parameter λ denoise regularization parameter λ which best fits holdout pixels & interpolate

CALIOP parallel backscatter digitizer counts from 2016-09-18 13:34:

The three keys ideas that OE shares with regularized maximum likelihood estimation

Noise model quantifies goodness of fit between F(x) and y

2) Regularizer function that promotes a priori about x $\ell(y \mid F(x)) + \lambda p(x)$

3) Regularization parameter sets the degree to which the a priori of x is promoted

Error vs the regularization parameter Intuition behind the regularization parameter

High bias (e.g. smoothing) $\tilde{p}_g(x)$ Low variance

λ - regularization parameter

Time [UTC]

Willem J. Marais, et. al., "Approach to simultaneously denoise and invert backscatter and extinction from photon-limited atmospheric lidar observations" (2016)

Denoising UW High Spectral Resolution Lidar data 10⁻⁴ 7000 7000 6000 lidar ratio [sr] **PTV** backscatter [m⁻¹ sr⁻¹] 6000 ection [m (Poisson total ے ج 10⁻⁵ <u>5000 ا</u> variation) Altitude 3000 Altitude 9000 Altitude Cross-s 10^{-6} ackscatter 2000 2000 1000 1000 10-02:00 05:00 06:00 01:00 03:00 00:00 04:00 02:01 07:00 HSRL total column AOD with 0.08 AOD offset n aerosol optical depth 0.5 Time [UTC] AERONET AOD 0.4 0.3 0.2 Colum 0.1 02:00 03:00 06:00 07:00 05:00 04:00 07:00 Willem J. Marais, et. al., "Approach to simultaneously denoise and invert Time [UTC]

Denoising NCAR Micro Pulse DIAL (MPD) data

Willem J. Marais, and Matthew Hayman. "Extending water vapor measurement capability of photon limited differential absorption lidars through simultaneous denoising and inversion." Atmospheric Measurement Techniques (2022)