The Relationship between Air Pollution and El Niño: Global and Regional Perspectives Derived from Two Decades of Satellite Measurements

Jack Fishman

Atmospheric Sciences NASA Langley Research Center Hampton, Virginia USA 23681

Collaborators: John K. Creilson, Amy E. Wozniak R. Bradley Pierce, Doreen O. Neil

> Presented at: National Space Science and Technology Center Huntsville, AL February 10, 2003

The Origin of Using Satellite Data to Study Tropospheric Ozone Can be Linked to Nobel-Prize Winning Research

from Nobel Prize press release:

The Royal Swedish Academy of Sciences has decided to award the 1995 Nobel Prize in Chemistry to **Paul Crutzen, Mario Molina** and **F. Sherwood Rowland** for their work in atmospheric chemistry, particularly concerning **the formation** and decomposition **of ozone**.

In his search for understanding the sources of ozone in the troposphere, Crutzen made the first measurements of tropospheric ozone where tropical biomass burning was occurring and found considerably higher concentrations than what had been published previously

LATITUDES OZONE DIST SOUTHERN TROPICAL 200 10 Observed during burning season. 300 Crutzen et al. (1985) 400 Pressure (mb) Height (km ·MSL) Fishman et al. (1979 500 Routhier et al. (1980) Seiler and Fishman 600 (1981) 10 - 20 DU 700 800 900 1000 50 60 70 80 Ozone (ppb) (from Fishman, Minnis & Reichle, JGR, 91, 1986)

- Can the 10-20 Dobson Unit Enhancement Be Identified from TOMS Total Ozone Measurements?
- Such Enhancements are Better Observed at Low Latitudes Due to Less Stratospheric Variability
- TOMS Precision is 1% (~ 3 DU)

Enhanced Total Ozone Observed in Conjunction with Biomass Burning in 1980 Episode

(from Fishman, Minnis & Reichle, JGR, 91, 1986)

High Surface Ozone Concentrations During Pollution Episode Also Observed in TOMS Total Ozone

(from Fishman et al., J. Clim. Appl. Met., 26, 1987)

Separate Stratosphere from Troposphere to Compute Tropospheric Ozone Residual (TOR)

First Separation of TOMS Total Ozone to Derive Tropospheric Ozone Residual Used SAGE Measurements to Determine Stratospheric Ozone:

- Seasonal Climatologies Produced
 - Highest TOR in NH Summer
 - Tropical Enhancement in

Austral Spring

• Data Too Sparse to Examine Interannual Variability

Separation of the Stratosphere from Troposphere to Isolate a Tropospheric Ozone Component Can Use Any Ozone Profiler

Climatological Comparison of Ozonesonde Data with SBUV Measurements at Wallops Island

Information Contained in SBUV Measurements

ozone.13.4x3.09 pressure level: 1000mb - 100mb

SBUV September 1992 pressure level: 1000mb - 63mb

[03] Dobson Units

50

60

70

80

90

100

ozone.13.4x5.09 pressure level: 1000mb - 250mb

SBUV September 1992 pressure level: 1013mb - 253mb

40

10

20

30

Schematic Diagram of Empirical Correction

Input SBUV Measurement: (A + B + C)

Output^{*} for TOR Calculation $C^* = Z_1 (A + B + C)/(X + Y + Z_1)$ $B^* = Y (A + B + C)/(X + Y + Z_1)$ $A^* = X (A + B + C)/(X + Y + Z_1)$

Comparison Using Empirical Correction with Ozonesondes

Other Data Sets Are Required To Separate Tropospheric Ozone from Total Ozone Measurements

- SAGE: Good Vertical Resolution; Poor Spatial Coverage
- HALOE: Good Vertical Resolution; Poor Spatial Coverage
- MLS: Vertical Resolution Only >68 mb; Relatively Good Spatial Coverage Only One Archived Layer below 100 mb
- SBUV: Poor Vertical Resolution; Good Spatial Coverage Archived Layers: 1000–253 mb; 253-126 mb; 126-63 mb Stratospheric Fields Generated from 5 Days of Data
 - SAGE/TOMS TOR: ~ 30,000 Coincident Observations 1979-1991 [Fishman & Brackett, 1997] ~ 10 data points per 5° x 10° grid box for seasonal climatology
 - **SAGE/SBUV TOR:** Use Every TOMS Observation (up to 28,800 per day)
 - ~ 1500 data points per 1° x 1.25° grid box for seasonal climatology

Tropopause Heights: Archived Gridded Data Sets 2.5° x 2.5°

Comparison of Pixel Size for Computing TOR

SAGE/TOMS TOR (5° x 10°)

Seasonal Depictions of Climatological Tropospheric Ozone Residual (TOR) 1979-2000

SBUV Tropospheric Ozone Residual (TOR) DJF 1979-2000

SBUV Tropospheric Ozone Residual (TOR) MAM 1979-2000

SBUV Tropospheric Ozone Residual (TOR) JJA 1979-2000

40N

30N

20N

10N

EQ

105

205

30S

40S

SBUV Tropospheric Ozone Residual (TOR) SON 1979-2000

Comparison of TOMS/SAGE TOR with TOMS/SBUV TOR

Global TOR Averages Change with TOMS Archive

• Fishman et al. [1990]: 32.7 DU (pseudo-Version 6/SAGE)

Version 6 corrected for instrument drift

• Fishman & Brackett [1997]: 27.5 DU (Version 7/SAGE)

Version 7 incorporates ISCCP cloud climatology for correction

• This Study: **31.5 DU** (pseudo-Version 8/SBUV)

Version 8 includes aerosol and scan-angle dependence corrections

Satellite Study Demonstrates Synoptic-Scale Pollution Transport

Pollution from northern states pools off North Carolina coast

Unique transport situation carries offshore pollution to southern states

from Fishman and Balok [1999, JGR, 104, pp. 30,319]

Dobson Units

60 65 70 75

40 45

July 1988 Monthly TOR Captures High Ozone During Major Pollution Episode

July 1988 Monthly TOR Captures High Ozone During Major Pollution Episode

- Lower TOR within box due to terrain artifact
- Use terrain information for global validation

Lower TOR over North African Desert Regions Coincident with Higher Elevations

December-February TOR

Implications:

• TOMS Capable of Isolating Small (Regional) Scale Features

• ~3 DU for $\int^{2km} dz \Rightarrow ~20$ ppb in pbl

• Information can be used to validate O_3 backscatter sensitivity in boundary layer over cloudless unpolluted area

Higher Elevation Differences (3-4 km) Coincident with Greater O₃ Deficits (5-7 DU)

• Inferred Ozone Profile over North Africa Desert Region:

$$\int_{0}^{2 \text{ km}} [O_3] dz = ~3 \text{ DU}$$

$$\int_{0}^{4 \text{ km}} [O_3] dz = ~6 \text{ DU}$$

$$\int_{0}^{\text{Trop. (~17 \text{ km})}} [O_3] dz = ~25 \text{ DU}$$

Population and Ozone Pollution Strongly Correlated in India and China

Comparison of Indian and U.S. Air Pollution Episodes

TOR and Surface O₃ Depiction During July 3-15 Pollution Episode

GOME NO₂ Measurements Also See Enhancements over India and China

Average Tropospheric NO₂ Column Density During 1997, GOME

Ozone Enhancement over India

How does the Amount of Ozone over India Compare with the Amount Observed over the Eastern United States?

Definitions of ENSO Indicators

Other definitions include Sea Surface Temperature Anomalies (SSTA) in various regions of the Pacific:

Niño 1+2: Off coast of Ecuador; Niño 3: Eastern Pacific; Niño 4: Western Pacific; Niño 3.4: Central Pacific

Jan	29.8	Feb	29.9	Mar	34.6	Apr	44.	Мау	47.3	Jun	48.2	Jul	46.4	Aug	42.0	Sep	36.8	Oct	32.7	Nov	30.5	Dec	27.9
1991	31.5	1992	33.3	1989	40.5	1982	47.2	1982	52.9	1982	52.1	1982	48.3	1992	43.7	1990	40.1	1999	35.0	1981	33.2	1997	30.0
1984	31.2	1987	33.0	1982	38.1	1984	47.1	1981	50.0	1989	51.3	1992	47.8	1990	43.5	1988	37.9	1998	34.4	1988	32.1	1985	29.5
1998	30.9	1984	32.6	1990	37.9	1991	45.9	1990	49.8	1992	51.2	1987	47.6	1987	43.4	1992	37.6	1985	33.2	1997	31.8	1999	28.8
1990	30.7	1979	31.8	1987	36.7	1979	45.7	1989	49.5	1990	49.9	1990	47.6	1991	43.1	1991	37.3	1986	33.1	1992	31.7	1983	28.7
1986	30.7	1983	31.0	1984	35.5	1981	44.8	1992	49.2	1991	49.3	1991	47.5	1982	42.9	1989	37.1	1980	33.0	1991	31.5	1989	28.4
1987	30.7	1988	31.0	1981	34.9	1989	44.7	1983	48.1	1987	48.5	1989	46.9	1989	42.4	1986	37.0	1990	32.9	1999	31.3	1988	28.4
1979	30.3	1986	30.8	1998	34.8	1992	44.6	1986	47.5	1984	48.5	1984	46.6	1988	42.4	1998	36.8	1983	32.9	1979	31.2	1981	28.3
1988	30.1	1993	30.7	1988	34.7	1980	44.5	1991	47.4	1980	47.5	1988	46.6	1983	42.3	1985	36.7	1989	32.9	1987	30.7	1990	28.3
1999	29.8	1990	30.5	1993	34.7	1993	44.4	1979	47.2	1988	47.5	1981	46.6	1984	42.2	1987	36.7	1991	32.7	1982	30.1	1992	27.8
1981	29.8	1985	30.2	1979	34.0	1986	44.4	1984	46.6	1981	47.4	1983	46.0	1979	42.0	1983	36.6	1979	32.7	1983	30.0	1979	27.7
1983	29.7	1981	29.4	1986	34.0	1987	44.0	1999	46.2	1979	46.8	1986	46.0	1981	41.4	1997	36.4	1988	32.6	1985	29.8	1980	27.7
1993	29.7	1998	29.1	1980	33.9	1998	43.6	1980	46.1	1983	46.8	1980	45.7	1985	41.1	1980	36.3	1997	32.5	1989	29.6	1982	27.3
1985	29.4	1999	29.0	1985	32.8	1990	43.5	1988	45.6	1985	46.6	1979	45.1	1980	40.8	1981	36.0	1981	32.4	1990	29.2	1987	27.1
1982	29.1	1982	28.6	1983	32.6	1983	41.6	1985	44.4	1986	46.4	1985	44.9	1986	40.6	1984	36.0	1982	32.1	1980	28.8	1991	26.7
1989	29.1	1989	25.8	1992	32.3	1988	41.1	1987	44.2	1998	46.0	1998	44.8	1998	40.5	1999	35.8	1992	32.0	1986	28.6	1986	26.1
1992	27.6	1980	25.5	1999	26.7	1999	40.8	1998	42.4	1999	45.4	1999	44.0	1999	40.4	1982	35.5	1984	31.8	1984	28.6	1984	25.8
1980	25.7	1991	25.1			1985	40.5									1979	35.2	1987	30.6				

Monthly TOR Values Over Northern India 1979-1999

Monthly Averages for Each Year are Rank-Ordered:

1982 Highlighted in Red 1999 Highlighted in Blue

Correlation Coefficients Between Northern India Monthly TOR Values and Monthly/Seasonal ENSO Indicators (1979-1999)

Month	Mean TOR	Ra	nge	SC)I	ENSO SST Region				
		High	Low	Mon	Seas	1&2	3	3.4	4	
January	29.8	31.5 (1991)	25.7 (1980)	.04	01	.07	04	06	01	
February	29.9	33.3 (1992)	25.1 (1991)	33	45	.11	.27	.33	.21	
March	34.6	40.5 (1989)	26.7 (1999)	.02	.02	15	14	06	.15	
April	44.0	47.2 (1982)	40.5 (1985)	21	23	05	.13	.19	.31	
May	47.3	52.9 (1982)	42.4 (1998)	.21	.23	17	.11	.15	.31	
June	48.2	52.1 (1982)	45.4 (1999)	45	56	09	.28	.41	.44	
July	46.4	48.3 (1982)	44.0 (1999)	53	60	.09	.43	.62	.70	
August	42.0	43.7 (1992)	40.4 (1999)	44	53	.15	.46	.54	.61	
September	36.8	40.1 (1990)	35.2 (1979)	.09	.16	26	25	22	.06	
October	32.7	35.0 (1999)	30.6 (1987)	.55	.45	36	42	46	52	
November	30.5	33.2 (1981)	28.6 (1984)	.27	.08	.11	.04	.00	12	
December	27.9	30.0 (1997)	25.8 (1984)	.43	.21	.14	.02	07	13	

Note: Monthly Average for each year comprised of >7500 TOR measurements (252 points x ~30 days)

- Shaded Values Statistically Significant (>.9 confidence level)
- Most Significant Relationship between Summer TOR and Seasonal ENSO Indicators

Summer India TOR and SSTA-Niño 4 from 1979-1999

Springtime TOR Variability Over Atlantic Mid-Latitudes Linked to Differences in Prevailing Transport Patterns

North Atlantic Oscillation Determines Intensity of Transport Across Atlantic

Strong Correlation between TOR and NAO Index

What Improvements Will Take Place in the Near Future and What are the Long-Term Plans for Using Trace Gas Measurements from Space?

Tropospheric Trace Gases Observable by Satellite

Nitrogen Dioxide: (requires separation from stratosphere)

Formaldehyde

Carbon Monoxide

HIRDLS Daily Profile Coverage Will Provide Sufficient Information to Derive 3-Dimensional Stratospheric Ozone Distribution Down to 1 km Below Tropopause

Longitude (-180 to 180 deg.)

Geostationary Observations Will Provide Hourly Observations with 5-km Resolution

The National Air Quality Goal

August 9, 2002

- With Data from August 9:
- Can we predict unhealthy O₃
 - in Cincinnati on the 10th?
 - in Pittsburgh and and Buffalo on the 11th?
 - in Philadelphia and New Jersey on the 12th?

August 10

August 12

The Roadmap Has Been Laid Out

We must now pave the road and travel on it to our destination

GOME V4.6 retrieval from A. Richter University of Bremen, GR

Why Geo?

- temporal resolution appropriate to the processes never before achieved
- vast contiguous area observable
- high SNR from staring
- temporal and morphological changes observable
- sunrise, sunset data provide stratospheric/tropospheric discrimination for constituents measured in uv

IDEA: NASA-EPA-NOAA partnership to improve air quality assessment, management, and prediction by infusing (NASA) satellite measurements into (EPA, NOAA) analyses for public benefit.

IDEA (Infusing satellite data into environmental air quality applications)

Present state:

EPA develops national emission inventories, assesses air quality, predicts future conditions based on ground network measurements and models.

NOAA operates the national forecast system and environmental data satellites.

NASA inventories the global atmosphere from space; models chemical sources, transport, and transformation in the atmosphere.

Simulated observations over northeastern US (provided by CMAQ) demonstrate the importance of horizontal spatial resolution for air quality

- spatial resolution: ~20 x 20 km²
- spatial sample: 640 km swath in 90 minutes

 temporal sample: ~once every 3 days (available from LEO)

- spatial resolution: 4 x 4 km²
 spatial sample: continental USA in 60 minutes
- •temporal sample: once every hour (72 samples every three days) (available from GEO)

Simulated observations provided by CMAQ contribute to our development of techniques to correlate surface and column measurements for use in air quality

Hourly **Surface CO** at 4 km horizontal resolution

Hourly **column CO** at 4 km horizontal resolution

GeoTRACE (proposed in 1999) Geostationary Observatory for Tropospheric Air Chemistry

Geostationary orbit: 35,800 km Nadir footprint: 7 x 7 km Spectral range: UV/Mid-IR

Technologies

Large format FPAs (1536x1536) Advanced detector cooling technology Autonomous operations Modular, advanced instrument controller Internet node in space

PI: Dr. Jack Fishman

New Millennium Program Goals

Flight validate <u>technologies</u> for future science missions Enable entirely new measurements and science Increase science quality/quantity for future missions Reduce cost of future Space and Earth Science missions

Strategic Program Objectives

Create unprecedented capability to conduct detailed tropospheric chemistry measurements and analysis by measuring a suite of key tropospheric trace gases across the Earth disk every 15 minutes Create new mutually beneficial partnerships between commercial sector and science investigators

Measurement Characteristics

Backscattered UV spectrometry and IR correlation radiometry accurately measure spatial distributions Large focal plane arrays capture wide temporal variability of tropospheric phenomena

"GeoTRACE-2" ESSP-3 Mission (proposed in 2001)

Geostationary orbit: 35,800 km Nadir footprint: 5 x 5 km Spectral range: UV/Mid-IR

Technologies Secondary in ESSP

Large format FPAs (1024x1024) still cornerstone of instruments in IR and UV/VIS

Regional field of view (5000 km x 5000 km) Footprint at mid-latitudes 6-7 km

Lead Science Team Members: Brune (Penn State), Fishman, Neil (LaRC), Gleason (GSFC)

ESSP Goals

The Earth System Science Pathfinder (3rd solicitation) Program is a science program designed to deliver "quick" specific scientific missions; science proposal [Goddard mission lead] due May 2001; launch in 2006

Strategic Program Objectives

Create unprecedented capability to conduct detailed tropospheric chemistry measurements and analysis by measuring a suite of key tropospheric trace gases (O₃, CO, NO₂, SO₂, CH₂O) and aerosols over region of interest every 15-30 minutes

Science Objectives to focus on regional atmospheric chemistry and interaction between global and regional air quality

Measurement Characteristics

Backscattered UV spectrometry and IR correlation radiometry accurately measure spatial distributions Large focal plane arrays capture wide temporal variability of tropospheric phenomena

Three-Day Air Quality Forecast

- With Model Runs from August 9:
- NOAA issues **unhealthy O₃** advisory:
 - for Cincinnati on the 10^{th}
 - for Pittsburgh and Buffalo on the 11th
 - for Philadelphia and New Jersey on the $12^{\mbox{th}}$

EPA Issues Directive to Mitigate O₃ and Alerts Population of Potential Health Risk

August 10

August 11

August 12

Summary

• 2-Decade Record of TOR Now Available

http://asd-www.larc.nasa.gov/TOR/data.html

- High Resolution Data Delineate Elevated Terrain
 - Possible Use for Validation
- Strong Correlation between Population and Pollution
 - Interannual Variability over Northern India Linked to ENSO
 - Can ENSO or Other Indicators be Used as Predictors?
- Transport of Pollution across Atlantic Linked to NAO
- Challenge to Use Satellite Measurements with Models to Understand/Forecast Global and Regional Pollution
- New Satellites Promise Much Better Tropospheric Measurement Capability within Next Few Years
- Geostationary Measurements Ideal for Tropospheric Trace Gases